![]() LASER SOURCE WITH SEMICONDUCTOR
专利摘要:
Semiconductor laser source in which a waveguide in which a filter (22) is made is made of a material that is less sensitive to temperature. The laser source also comprises: a tuning device (16) capable of shifting wavelengths λRj of possible resonance of a Fabry-Perot optical cavity in response to an electrical control signal, • a sensor (40) ) capable of measuring a physical quantity representative of the difference between a central wavelength λCf of the filter (22) and one of the wavelengths λRj possible, • an electronic circuit (42) able to generate, depending of the physical quantity measured by the sensor, the electrical control signal of the tuning device (16) for maintaining a wavelength λRj at the center of each passband of the filter (22) which selects a wavelength ALi d emission of the laser source. 公开号:FR3046705A1 申请号:FR1650171 申请日:2016-01-08 公开日:2017-07-14 发明作者:Sylvie Menezo 申请人:Commissariat a lEnergie Atomique CEA;Commissariat a lEnergie Atomique et aux Energies Alternatives CEA; IPC主号:
专利说明:
où « perimeter » est le périmètre de l'anneau réalisé dans le guide d'onde 50 et A est la longueur d'onde du signal optique pour laquelle la longueur d'onde ACf et l'intervalle Avf sont calculés. [0047] La largeur AAf peut être déterminée par les pertes de propagation dans le guide d’onde 50 de l’anneau et les coefficients de couplage évanescent du guide d’onde 50 avec les guides d'ondes 15 et 25. [0048] Le graphe de la figure 6 a été représenté dans le cas où la température de fonctionnement est égale à Tmin. La ligne en pointillés 56 représente la position de la bande réfléchissante 4 lorsque la température de fonctionnement est égale à Tmax. Comme illustré sur le graphe de la figure 6, quelle que soit la température de fonctionnement de la source laser comprise entre Tmin et Tmax, la bande passante 6 est toujours située à l'intérieur de la bande réfléchissante 4 même si celle-ci se déplace à cause des variations de température. Sur le graphe de la figure 6, le léger déplacement de la bande passante 6 en fonction de la température n'a pas été représenté. [0049] Les dimensions du filtre 22 sont également déterminées pour obtenir les propriétés souhaitées des couplages évanescents entre le guide d’onde 50 de l'anneau et les guides d'ondes 15 et 25 et en particulier le taux de transfert de puissance entre les guides d'ondes 15, 25 et et le guide d’onde 50. Par exemple, les dimensions du filtre 22 déterminées sont notamment choisies parmi les dimensions suivantes : - le rayon de l'anneau R, - des longueurs L1 et L2 sur lesquelles la largeur des guides d’onde 15 et 25 sont réduites de façon à égaliser les indices de propagation dans les guides d’onde 15 et 25 et 50, - les distances di et d2, - les épaisseurs eA, eAf et la largeur LA du guide d'onde 50 du filtre 22, - l'épaisseur eG et la largeur LG des guides d'onde 15 et 25 dans le cas d’un couplage évanescent, - l'espace vertical eAG en oxyde de silicium qui sépare le guide d’onde 50 et les guides d'onde 15 et 25. Les dimensions L1 et L2 sont représentées sur la figure 5. Les dimensions di, d2, eG, LG, eAG, eA eAf, et LA sont représentées dans une coupe verticale passant par le centre de l'anneau 50 et perpendiculaire aux guides d'onde 15 et 25 sur la figure 7. Dans cette coupe, les guides d'onde 15 et 25 et 50 sont situés dans des couches horizontales respectives superposées l'une au-dessus de l'autre dans la direction verticale. Ces couches sont parallèles au plan dans lequel s'étend principalement un substrat 60, sur lequel les différentes couches utilisées pour fabriquer la source laser 10 sont empilées. Ce plan est par la suite appelé « plan du substrat ». Dans les figures qui suivent, le plan du substrat est toujours horizontal. [0050] À titre d'illustration, typiquement : - les distances di et d2 sont comprises entre 0 pm et 3 pm, - l'épaisseur eG est comprise entre 100 nm et 500 nm, - la largeur LG est comprise entre 100 nm et 500 nm, - l'épaisseur eAG est comprise entre 0 nm et 200 nm, - l'épaisseur eA est comprise entre 50 nm et 700 nm, - la largeur LA est comprise entre 500 nm et 1 pm, - le rayon de l'anneau 50 est compris entre 3 pm et 100 pm. [0051] Par exemple, pour obtenir un taux de transfert de puissance de 10 % entre le guide d'onde 15 et le guide d’onde 50 de l’anneau, des dimensions possibles sont les suivantes : R = 30 pm, L1 = 60 pm, eG = 300 nm, eAG = 50 nm, LG = 180 nm, eA = 500nm, eAf = 50 nm, LA=700 nm, di = 1,1 pm. [0052] La figure 8 représente un premier exemple de mode de réalisation de la source laser 10. La source laser 10 est réalisée à l'aide des mêmes procédés de fabrication que ceux utilisés pour fabriquer des composant CMOS (« Complementary Metal-Oxyde Semi-conductor »). Ici, la source laser 10 est fabriquée sur le substrat 60 en silicium qui s'étend horizontalement. [0053] Sur la figure 8, la source laser 10 comporte successivement empilés au-dessus du substrat 60 en allant du bas vers le haut : - une couche 64 de nitrure de silicium encapsulée dans de l'oxyde de silicium et qui contient le guide d'onde 50, - une couche 66 de silicium encapsulé dans de l'oxyde de silicium dans laquelle sont réalisés les guides d'onde 15 et 25 et les réflecteurs 12 et 14, - une couche 68 comportant le guide d'onde 28 à l'intérieur duquel est réalisé l'amplificateur 30. [0054] Les coupleurs adiabatiques 26 et 32 sont réalisés en partie dans le guide d'onde 25 et dans le guide d'onde 28. [0055] De préférence, l'amplificateur 30 est un amplificateur large bande, c'est-à-dire capable de générer et d'amplifier une plage importante de longueurs d'onde. Cette plage comprend la longueur d'onde Au. Typiquement, elle est centrée sur cette longueur d'onde ALi à la température (Tmax+Tmin)/2. La largeur de cette plage de longueur d'onde à -3 dB est par exemple d'au moins 10 nm ou 25 nm ou 35nm et reste large avec l’augmentation de température. Par exemple, les matériaux lll-V constituant l'amplificateur 30 sont ceux décrits dans l'article suivant : Dimitris Fitsios et al. « High-gain 1,3 pm GalnNAs semiconductor optical amplifier with ertchartced température stability for all-optical Processing at 10 Gb/s », Applied optics, may 2015 vol. 54, n°l, 1er janvier 2015. Le fait de réaliser l'amplificateur 30 comme décrit dans cet article permet en plus d'obtenir un amplificateur large bande stable en température. Cela améliore le fonctionnement de la source laser et notamment cela permet de maintenir une puissance émise par la source laser presque constante dans toute la gamme de températures de fonctionnement [Tmin ; Tmax]. Dans ce cas, le guide d'onde 28 et l'amplificateur 30 se présentent sous la forme d'un empilement de sous-couches en alternance en GalnNAs et en GaNAs interposées entre une sous-couche inférieure 70 et une sous-couche supérieure en GaAs dopé P. La sous-couche 70 est une sous-couche en matériau lll-V de dopage opposé à la sous couche supérieure. Par exemple, ici, il s'agit d'une sous-couche en GaAs dopé N. [0056] L'amplificateur 30 comporte, en plus du guide d'onde 28, une prise 74 directement en contact mécanique et électrique avec la portion de la sous-couche 70 située sous l'empilement de sous-couches en GalnNAs et GaNAs. La sous-couche en GaAs dopée P est en contact mécanique et électrique avec une prise 76 pour raccorder électriquement la partie supérieure de l'amplificateur 30 à un potentiel. Lorsqu'un courant supérieur au courant de seuil du laser est appliqué entre les prises 74 et 76, l'amplificateur 30 génère et amplifie le signal optique qui résonne à l'intérieur de la cavité de Fabry-Pérot. [0057] Le dispositif d'accord 16 est ici une chaufferette apte à chauffer le guide d'onde 15 pour déplacer les longueurs d'onde ÀRj. [0058] Dans ce mode de réalisation, le dispositif d'accord 16 comprend une résistance 80 électriquement raccordée à deux prises 82 et 84 de contact électrique permettant de faire circuler un courant dans cette résistance 80 de manière à transformer l'énergie électrique en chaleur. Ces prises 82 et 84 sont électriquement raccordées à une source de courant ou de tension commandée par le circuit électronique 42 en fonction des mesures du capteur 40. La commande du dispositif d'accord 16 consiste donc ici à régler la puissance électrique qui traverse la résistance 80. Faire circuler un courant dans la résistance 80 permet de chauffer le guide d’onde 15 et donc de déplacer les longueurs d'onde λκ]. [0059] La résistance 80 est ici une bande réalisée dans la sous-couche 70. Cette bande est donc une bande en GaAs dopée N. Dans ce mode de réalisation, elle est logiquement située au-dessus du guide d'onde 15 dont la variation d’indice dnSi/dT est nettement supérieure à la variation d’indice dnf/dT. [0060] Le dispositif d'accord 16, le guide d'onde 28 et l'amplificateur 30 sont recouverts d'une enveloppe protectrice 90 qui les isole mécaniquement de l'extérieur. Seules les prises 74, 76, 82, 84 font saillie au-delà de l'enveloppe 90. Par exemple, l'enveloppe 90 est réalisée en nitrure de silicium. [0061] Le trajet du signal optique résonant dans la source laser 10 est représenté sur la figure 8 par une double flèche. [0062] Un procédé de fabrication de la source laser 10 va maintenant être décrit en référence au procédé de la figure 9 et à l'aide des figures 10 à 14. [0063] Lors d'une étape 100, le procédé commence par la fourniture d'un substrat SOI 102 (Silicium-On-Insulator). Ce substrat 102 (figure 10) comporte successivement les couches suivantes empilées les unes au-dessus des autres en allant du bas vers le haut : - un substrat 104 en silicium, - une couche 106 d'oxyde de silicium, et - la couche 66 de silicium. [0064] Lors d'une étape 110, les guides d'onde 15 et 25 et les réflecteurs 12 et 14 sont fabriqués dans la couche 66 en silicium. Par exemple, ils sont fabriqués par photolithographie et gravure de cette couche 66. Lors de cette étape, les parties des coupleurs 26 et 32 qui se trouvent dans la couche 66 sont également réalisées. [0065] Lors d'une étape 112, la couche 66 est encapsulée dans une couche 114 (figure 11) d'oxyde de silicium. Cette couche 114 est polie, c'est-à-dire planarisée, par exemple, par un procédé de polissage physico-chimique, plus connu sous l'acronyme CMP (« Chimical-Mechanical Planarization »), afin de planariser la face supérieure de cette couche 114. [0066] Lors d'une étape 116, une couche en nitrure de silicium est déposée sur la face supérieure de la couche 114. Ensuite, cette couche en nitrure de silicium est gravée pour former le guide d'onde 50 puis encapsulé dans de l'oxyde de silicium. Sur la figure 12 et les suivantes, pour simplifier ces figures, le guide d’onde 50 est représenté sous la forme d'un bloc de nitrure de silicium. On obtient alors la couche 64 (figure 12) de nitrure de silicium encapsulée dans de l'oxyde de silicium. La face supérieure de la couche 64 est ensuite polie, par exemple, comme décrit en référence à l'étape 112. [0067] Lors d'une étape 120, un substrat 122 (figure 13) est collé sur la face extérieure en oxyde de silicium de la couche 64. Le substrat 122 est un substrat en silicium qui comprend au dessus une couche épaisse d’oxyde de silicium. Ce sont ces couches d'oxyde de silicium qui sont collées l'une sur l'autre. [0068] Lors d'une étape 124, la couche 104 en silicium est retirée, et la couche 106 est amincie pour ne laisser qu’une fine couche intermédiaire 126 (figure 14) d'oxyde de silicium. La face extérieure de la couche 126 est polie comme décrit en référence à l'étape 112. [0069] Lors d'une étape 128, la couche 68 en matériau à gain lll-V est collée ou déposée sur la couche 126. Par exemple, la couche 68 (figure 8) en matériau à gain lll-V est collée sur la face extérieure de la couche 126. La couche 68 comprend la sous-couche inférieure 70, l'empilement de sous-couches en alternance en GalnNAs et en GaNAs et la sous-couche supérieure dopée. [0070] Une fois l'étape 128 réalisée, lors d'une étape 130, la couche 68 est gravée pour fabriquer le guide d'onde 28, l'amplificateur 30 et la résistance 80. Typiquement, au cours d’une première gravure, les sous-couches supérieures de la couche 68 sont gravées pour structurer l'amplificateur 30. Ensuite, lors d’une deuxième gravure, la sous couche 70 est gravée pour finaliser la structuration de amplificateur 30 et pour réaliser la résistance 80. [0071] Enfin, lors d'une étape 132, l'enveloppe 90 et les prises 74, 76, 82 et 84 sont réalisées. On obtient alors la source laser dont une vue en coupe est représentée sur la figure 8. [0072] La figure 15 représente un deuxième procédé de fabrication d'une source laser 150 (figure 18). Ce procédé débute par les étapes 110 et 112 déjà décrites en référence au procédé de la figure 9. [0073] Ensuite, il se poursuit par une étape 152 où une couche identique à la couche 68 précédemment décrite est collée ou déposée sur la couche 114 (figure 16). Typiquement, cette couche est collée par collage moléculaire. [0074] Ensuite, lors d'une étape 158, cette couche est gravée pour fabriquer le guide d'onde 28, l'amplificateur 30, la résistance 80 et une résistance additionnelle 154 (figure 16). Par exemple, ceci est réalisé comme décrit en référence à l'étape 128. [0075] La résistance 154 est utilisée pour réaliser un dispositif d'accord 156 (figure 18) par exemple identique au dispositif d'accord 16, sauf que celui-ci permet de déplacer la bande réfléchissante 4 du réflecteur 14 en fonction d'un signal électrique de commande généré par le circuit électronique 42. Ce signal électrique de commande du dispositif d'accord 156 est typiquement généré en fonction des mesures du capteur 40. Cela permet de réduire si nécessaire la largeur AR de la bande réfléchissante des réflecteurs. Par exemple, dans ce cas, elle peut être aussi petite que N x Avf. [0076] La résistance 154 est située au-dessus du réflecteur 14. [0077] Lors d'une étape 160, l'enveloppe protectrice 90 est réalisée. Lors de cette étape, le guide d’onde 50 est fabriqué dans l'enveloppe 90 qui est en nitrure de silicium. Par exemple, le guide d’onde 50 est fabriqué par photolithographie et gravure de l'enveloppe 90 à proximité des extrémités des guides d'onde 15 et 25 (figure 17). [0078] Lors d'une étape 162, les prises 74, 76, 82 et 84 sont fabriquées. Des prises de contact 164 et 166 qui raccordent mécaniquement et électriquement la résistance 154 sont également fabriquées pour faire circuler un courant dans cette résistance 154. La combinaison de la résistance 154 et des prises 164 et 166 forme le dispositif d'accord 156. On obtient alors la source laser 150 représentée sur la figure 18. [0079] Sur la figure 18, le trajet du signal optique résonant dans la source laser 150 est représenté par une double flèche. [0080] La source laser 150 est identique à la source laser 10, sauf que le guide d’onde 50 et le guide d'onde 28 sont tous les deux disposés du même côté de la couche 66. De plus, dans la source laser 150, les réflecteurs 12 et 14 sont tournés vers le haut et non pas vers le bas, comme dans la source laser 10. Ceci permet de raccorder la sortie du réflecteur 14 à une fibre optique arrivant par le dessus de la source laser 150. [0081] Le fonctionnement de la source laser 150 est le même que celui de la source laser 10, sauf que le circuit électronique 42 est ici en plus adapté pour commander le dispositif d'accord 156 de manière à accorder en plus les réflecteurs 12 et 14. [0082] La figure 19 représente une source laser 180 identique à la source laser 10, sauf que : - les réflecteurs 12 et 14 sont remplacés par, respectivement, des réflecteurs 182, 184, et - le dispositif d'accord 16 est situé, par exemple, au-dessus du guide d'onde 25 et non plus au-dessus du guide d'onde 15. [0083] Les réflecteurs 182, 184 sont identiques, respectivement, aux réflecteurs 12 et 14 sauf qu'ils sont réalisés dans la même couche en nitrure de silicium que le guide d'onde 50. Par exemple, ici, le réflecteur 182 est réalisé à une extrémité d'un guide d'onde 186 en nitrure de silicium dont l'autre extrémité est raccordée optiquement au guide d’onde 50 de l'anneau du filtre 22 par couplage évanescent. Par conséquent, le guide d'onde 15 est omis. Le guide d’onde 50 de l’anneau est raccordé optiquement au guide d'onde 25 par un couplage évanescent comme décrit précédemment. De façon similaire, le réflecteur 184 est réalisé à l'extrémité d'un guide d'onde 188 en nitrure de silicium dont l'autre extrémité est raccordée optiquement, par un couplage adiabatique, au guide d'onde 25. [0084] Dans ce cas, de préférence, la largeur AR de la bande réfléchissante des réflecteurs 182 et 184 est supérieure à DT x (dACf/dT). [0085] Les coupleurs qui raccordent optiquement entre eux les guides d'onde 25 et 28 sont des coupleurs adiabatiques. [0086] On peut noter que le fait de réaliser les réflecteurs 182 et 184 dans un guide d'onde en nitrure de silicium, permet de diminuer leur largeur de bande. Ceci permet aussi de diminuer l'intervalle Avf du filtre 22 pour obtenir une source laser monochromatique. [0087] Sur la figure 19, le trajet du signal optique résonant est représenté par une double flèche. [0088] La source laser 180 présente l'avantage que la bande réfléchissante 4 des réflecteurs 182 et 184 se déplace beaucoup moins rapidement que dans les sources laser 10 ou 150. En effet, dans ce mode de réalisation, la variation dÀCR/dT de la longueur d'onde centrale ÀCR est égale à la variation dACf/dT. Ainsi, quelle que soit la variation de température, la bande passante 6 reste toujours à l'intérieur de la bande réfléchissante 4 et ne se déplace pas par rapport aux bornes supérieure et inférieure de cette bande réfléchissante 4. La largeur AR de la bande réfléchissante 4 peut alors être réduite. Typiquement, la largeur AR est alors strictement supérieure à DT x dAcf/dT + Δλ,. [0089] La figure 20 représente une source laser 190 identique à la source laser 180, sauf que les réflecteurs 12 et 14 sont remplacés par des réflecteurs 192 et 194 en partie réalisés dans la couche 64 et en partie dans la couche 66. Ainsi, les réflecteurs sont réalisés en partie en nitrure de silicium et en partie en silicium. Typiquement, chaque réflecteur 192 et 194 est formé de deux réseaux de Bragg en vis-à-vis, un dans le guide d'onde en nitrure de silicium et un dans le guide d'onde en silicium. [0090] La figure 21 représente une source laser 200 identique à la source laser 150, sauf que le dispositif d'accord 16 est remplacé par un dispositif d'accord 202. Le dispositif d'accord 202 comporte une section dopée P ou N formant une résistance 204 réalisée dans l'un des guides d'onde 15 ou 25. Sur la figure 21, la section 204 est réalisée dans le guide d'onde 15. Le dispositif d'accord 202 comporte aussi des prises 206 et 208 pour raccorder la résistance 204 au circuit électronique 42. Le fonctionnement de la source laser 200 se déduit de celui de la source laser 150. [0091] La figure 22 représente une source laser 220 N-longueurs d'onde ou poli-chromatique. La source laser 220 est identique à la source laser 10, sauf que le filtre 22 est remplacé par un filtre 222, et les réflecteurs 12 et 14 sont remplacés, respectivement, par des réflecteurs 224 et 226. [0092] Le filtre 222 est identique au filtre 22, sauf que les dimensions du filtre 222 sont modifiées de manière à ce qu'il présente plusieurs bandes passantes situées simultanément à l'intérieur de la bande réfléchissante des réflecteurs 224 et 226. Dans ce mode de réalisation, le filtre 222 est un anneau résonant réalisé dans le guide d’onde 50 raccordé optiquement aux guides d'onde 15 et 25 par des couplages évanescents. [0093] Sur le graphe de la figure 23, trois bandes passantes 230 à 232 du filtre 222 sont représentées comme étant situées à l'intérieur de la bande réfléchissante 228 des réflecteurs 224 et 226. Les longueurs d'onde centrales de ces bandes passantes sont notées, respectivement, ACfi, Aœ, et Aœ. Dans le cas d'une source laser multi-longueurs d'onde, le symbole ACf est utilisé pour désigner l'une quelconque des longueurs d'onde centrale Acfi, Acf2,et ACf3. Chacune de ces bandes passantes 230 à 232 est par exemple identique à la bande passante 6. De plus, l'intervalle Avf entre deux de ces bandes passantes successives est un multiple entier de l'intervalle AAR et strictement inférieur à la largeur AR de la bande réfléchissante 234. [0094] De préférence, la largeur AR de la bande réfléchissante 234 des réflecteurs 224 et 226 est : - supérieure à DT x (dACR/dT) si N x Avf < DT x (dACR/dT), et - supérieure à N x Avf + DT x (dACf/dT) si N x Avf > DT x dACR/dT, où N est un nombre entier supérieur ou égal à deux et égal au nombre de longueurs d'onde ARj sélectionnées par le filtre 222. [0095] Le fonctionnement de la source laser 220 est identique à celui de la source laser 10 sauf qu'elle émet simultanément N longueurs d'onde notées ici Au, AL2 et λ[_3· [0096] Les figures 24 et 25 représentent un dispositif 236 d'accord susceptible de remplacer avantageusement le dispositif 16. La figure 24 est une vue, en coupe verticale du dispositif 236 le long d'un plan de coupe transversal perpendiculaire au guide d'onde 15. Comme le dispositif 16, le dispositif 236 est apte à chauffer le guide d'onde 15 en silicium en fonction d'un signal électrique de commande. Le dispositif 236 comporte deux chaufferettes 237 et 238 symétriques l'une de l'autre par rapport à un plan vertical 239 (figure 24) passant par le centre du guide d'onde 15. Pour simplifier la description, seule la chaufferette 237 est décrite en détail. La chaufferette 237 comporte, par exemple, les mêmes éléments que le dispositif 16. En particulier, elle comporte une résistance 240 réalisée dans la sous-couche 70 et deux prises 242A et 242B de contact pour faire circuler un courant dans la résistance 240. Sur la figure 24, seule une prise 242A est visible. [0097] La chaufferette 237 comporte en plus un bras latéral 244 réalisé en silicium dans la couche 60 est en continuité thermique avec le guide d’onde 15. Ce bras 244 s'étend dans une direction transversale horizontale depuis le guide d'onde 15 vers la gauche. Son épaisseur dans la direction verticale est inférieure à celle du guide d'onde 15. Plus précisément, ses dimensions sont telles que le signal optique ne peut pas se propager à l'intérieur du bras 244 et reste principalement confiné à l'intérieur d'une zone 245 qui entoure le guide d'onde 15. A son extrémité opposée au guide d'onde 15, dans ce mode de réalisation, le bras 244 présente une portion distale 246 en vis-à-vis de la résistance 240. La portion distale 246 est séparé de la résistance 240 par une fine couche d'oxyde de silicium d'épaisseur eSp. Typiquement, l'épaisseur eSp est égale à l'épaisseur d'oxyde de silicium qui sépare le guide d'onde 28 du guide d'onde 25. A cet effet, la portion distale 246 forme un renflement. Ici, l'épaisseur de la portion distale 246 est égale à l'épaisseur du guide d'onde 15. Le bras 244 ne forme qu'un seul bloc de matière avec le guide d'onde 15. [0098] Lors du fonctionnement du dispositif 236, la résistance 240 chauffe préférentiellement la portion distale 246 puis, par conduction thermique par l'intermédiaire du bras 244, la chaleur est transmise au guide d'onde 15. Le guide d'onde 15 chauffe donc à son tour ce qui fait varier son indice de réfraction. Dans ce mode de réalisation, la résistance 240 est placée en dehors de la zone 245 où circule le signal résonant. En particulier, la résistance 240 n'est pas située, dans la direction verticale, au-dessus et en vis-à-vis du guide d'onde 15. Ainsi, on limite les pertes optiques tout en étant toujours capable de chauffer efficacement ce guide d'onde. . En effet, par comparaison, dans le dispositif 16, la résistance 80 est en vis-à-vis du guide d'onde 15 et se trouve à l'intérieur de la zone 245 ce qui provoque des pertes optiques. Ici, la chaufferette 237 ne chauffe pas directement le guide d'onde 15 mais le chauffe principalement par l'intermédiaire du bras 244 qui ne véhicule aucun signal optique. [0099] La figure 26 représente un filtre 260 susceptible d'être utilisé à la place du filtre 22. Le filtre 260 comporte : - un guide d'onde 262 en nitrure de silicium formant un anneau résonant, - deux guides d'onde 264 et 266 en nitrure de silicium situés dans le même plan que le guide d'onde 262 et raccordés optiquement au guide d’onde 262 par des couplages évanescents respectifs. [00100] Typiquement, le taux de couplage évanescent entre le guide d'onde 262 et les guides d'ondes 264, 266 sont les mêmes que ceux décrit dans le cas du filtre 22. Les deux guides d'onde 264, 266 sont raccordés optiquement par l'intermédiaire des coupleurs adiabatiques 268 et 270, respectivement, aux guides d'onde 15 et 25. Dans ce mode de réalisation, le guide d’onde 262 n'est pas directement raccordé optiquement aux guides d'onde 15 et 25, mais raccordé à ces guides d'onde par l'intermédiaire des guides d'onde 264 et 266 en nitrure de silicium. [00101] De nombreux autres modes de réalisation sont possibles. Par exemple, le dispositif d'accord 16 ou 156 peut être omis. A l'inverse, un dispositif d'accord supplémentaire, tel que le dispositif d'accord 156, peut être ajouté dans n'importe quels modes de réalisation précédemment décrits pour déplacer la bande réfléchissante des réflecteurs. [00102] Le dispositif d'accord n'est pas nécessairement une chaufferette. Par exemple, il est aussi possible d'utiliser en tant que dispositif d'accord une jonction P-N réalisée dans l'un des guides d'onde en silicium. L'indice de réfraction du silicium au niveau de cette jonction P-N varie en fonction de la polarisation de cette jonction. Le signal électronique de commande du dispositif d'accord fait alors varier la polarisation de cette jonction P-N. Cette façon de faire varier l'indice de réfraction du silicium est par exemple décrite plus en détail dans l'article suivant : G.T. Reed et al., « Silicon optical modulators », Natures photonics, Vol 4, août 2010. [00103] Les facteurs de réflexion des réflecteurs avant et arrière peuvent aussi être égaux. [00104] Si le filtre 22 de la source laser 180 est remplacé par le filtre 222 alors la largeur AR de la bande réfléchissante des réflecteurs 182 et 184 peut être réduite. Toutefois, de préférence, elle est supérieure à N x Avf + DT x (dACf/dT), où N est un nombre entier supérieur ou égal à deux et égal au nombre de longueurs d'onde ARj sélectionnées par le filtre 222. [00105] D'autres modes de réalisation du guide d'onde 28 et de l'amplificateur 30 sont possibles. Typiquement, le guide d'onde 28 comporte successivement, en s'éloignant du substrat 60 : une sous-couche inférieure dopée, un empilement de puits quantiques en quaternaire et une sous-couche supérieure dopée de signe opposé à la sous-couche inférieure. La sous-couche 70 dopée peut être réalisée dans d'autres matériaux tels qu'en InP dopé N ou R Dans ce cas, l'empilement de puits quantiques comporte des sous-couches en InGaAsP ou en GalnNAs ou autres. Pour un exemple de réalisation d'un amplificateur large bande stable en température dans lequel la sous-couche 70 est réalisée en InP, le lecteur peut se référer à l'article suivant : K. Morito et al., « GainNAs / InP Tensile-Strained Bulk Polarization-Insensitive SOA », ECOC2006, IEEE. Lorsque les sous-couches inférieure et supérieure sont en GaAs, l'empilement de puits quantiques peut être réalisé avec des sous-couches en AIGaAs. Les dopages des sous-couches supérieure et inférieure peuvent être inversés. [00106] En variante, le guide d'onde 28 et l'amplificateur 30 sont raccordés optiquement aux guides d'ondes 15 et 25 par un couplage évanescent. Dans ce cas, les coupleurs adiabatiques 26 et 32 sont omis. Un tel raccordement optique entre l'amplificateur et des guides d'onde en silicium est par exemple décrit dans l'article suivant : A. W. Fang et al., « Electrically pumped hybrid AIGalnAs-silicon evanescent laser», Optics Express, Vol. 14, pp. 9203-9210 (2006). [00107] D'autres modes de réalisation du capteur 40 sont également possibles. Par exemple, en variante, le capteur 40 est remplacé par un capteur de la température de fonctionnement de la source laser. En effet, à chaque température de fonctionnement de la source laser, il est possible d'associer un écart entre les longueurs d'onde ACf et ARj. Dans ce cas, par exemple, le circuit électronique 42 comporte une table pré-enregistrée qui associe à plusieurs températures de fonctionnement de la source laser, les caractéristiques du signal électrique de commande à générer pour maintenir la longueur d'onde Au au centre de la bande passante 6 du filtre. Par exemple, cette table pré-enregistrée est construite expérimentalement. La température de la source laser peut être mesurée en utilisant un transducteur, comme une jonction P-N. En effet, les caractéristiques électriques d'une jonction P-N varie en fonction de la température. [00108] En variante, la chaufferette 238 est omise. Dans ce cas, le dispositif 236 n'est plus symétrique par rapport au plan 239. Dans une autre variante, le renflement 246 est omis. [00109] D'autres modes de réalisation du filtre sont possibles. Par exemple, l'anneau résonant peut être remplacé par un multiplexeur en longueur d'onde plus connu sous l'acronyme AWG (« Array Waveguide Grating »). Dans ce dernier cas, le filtre est couplé au guide d'onde en silicium par des coupleurs adiabatiques tels que les coupleurs adiabatiques 268 et 270 représentés sur la figure 26 et non plus par un couplage évanescent. [00110] Il est également possible d'utiliser d'autres matériaux que le nitrure de silicium. Par exemple, il est possible aussi d'utiliser, en tant que matériau moins sensible à la température, le nitrure d'aluminium. [00111] Une source laser qui émet à plusieurs longueurs d'onde Au peut également être réalisée comme décrit, par exemple, en référence aux figures 2 ou 6 de l'article suivant : Katarzyna Lawmiczuk et al. « Design of integrated photonic transmitter for application in fiber-to-the-home Systems », Photonics Applications in Astronomy, Communications, Industry and High-Energy Physics Experiments 2010 Proceedings of SPIE, vol 7745, 2010. Dans ce cas, le filtre est un multiplexeur démultiplexeur connu sous l'acronyme de AWG (« Array Waveguide Grating »). C'est alors ce composant AWG qui est réalisé dans le matériau moins sensible à la température. [00112] D'autres procédés de fabrication sont possibles. Par exemple, le procédé décrit en référence à la figure 17 de l'article suivant peut être facilement adapté pour fabriquer une source laser telle que la source laser 150 : Martijn J.R. Heck et al, « Ultra-low loss waveguide plateform and its intégration with Silicon photonics », Laser photonics rev. 8, n°5, pages 667-686 (2014). Plus précisément, le guide d'onde 50 est fabriqué dans un premier substrat. Ensuite, un second substrat SOI est collé sur le premier substrat. Les guides d'onde 15 et 25 sont alors réalisés dans la couche en silicium de ce second substrat. Enfin, la couche 68 est collée au-dessus du guide d'onde en silicium et l'amplificateur 30 est réalisé dans cette couche 68. [00113] Dans un autre mode de réalisation, la couche intermédiaire 126 est obtenue en retirant la totalité de la couche 106, puis en déposant sur la couche 66 mise à nue une couche d'oxyde de silicium. [00114] Enfin, l'ordre dans lequel sont agencés les différents composants photoniques à l'intérieur de la cavité de Fabry-Pérot peut être modifié. Par exemple, le filtre 22 peut être placé entre le coupleur 32 et le réflecteur 14. [00115] Le dispositif d'accord 236 peut être utilisé dans tout système photonique à semi-conducteur où il est nécessaire de chauffer un guide d'onde optique en limitant les pertes. En particulier, il peut être utilisé pour chauffer un guide d'onde d'un autre système qu'une source laser. Cette autre système peut être un modulateur de phase ou d'intensité d'un signal optique. LASER SOURCE SEMICONDUCTOR [001] The invention relates to a semiconductor laser source capable of emitting at least one Au wavelength, and a method of manufacturing this laser source. [002] Laser sources known to the inventors comprise: a front reflector and a rear reflector, these front and rear reflectors forming the ends of a Fabry-Pérot optical cavity capable of resonating an optical signal with several possible resonant frequencies, the possible wavelengths ARj of these possible resonant frequencies being regularly spaced from each other by an interval Δλκ and all included within a reflective band of the front and rear reflectors centered on a wavelength ACr and of width AR, - a set of waveguides optically connecting the front and back reflectors together, this assembly comprising: • a silicon waveguide, • a bandpass filter made in a waveguide and arranged to be traversed by the resonant optical signal between the front and rear reflectors, this bandpass filter being able to select at least one length At least one of the wavelengths ARj, the bandpass filter comprises a bandwidth centered on each wavelength Au to be selected, each bandwidth of the filter being centered on a central wavelength. ACf respectively and having a bandwidth AAf less than or equal to the AAR interval, • a waveguide material gain lll-V able to generate optical gain at each wavelength selected by the filter Au arranged and to be traversed by the resonant optical signal between the front and rear reflectors, this waveguide being coupled to the silicon waveguide by an adiabatic coupling able to transform a guided optical mode of the silicon waveguide into a mode guided optical waveguide material gain lll-V. [003] In these laser sources known to the inventors, the filter and the reflectors are made in silicon waveguides and the filter selects only a single wavelength. When the operating temperature of the known laser sources varies, the emission wavelength of these laser sources also varies at a rate of about 0.07 nm / ° C. Because of this, it is said that these known laser sources are temperature sensitive and that the emission wavelength of the laser source drifts as a function of temperature. To overcome this drawback, it is known to associate the laser source with a device for regulating its operating temperature to maintain it at a constant temperature. However, such control devices are bulky and consume a lot of energy. The invention aims to overcome this disadvantage by providing a semiconductor laser source less sensitive to temperature variations while remaining simple to manufacture. It therefore has as its object a semiconductor laser source in which: the waveguide in which the filter is made is made of a material that is less sensitive to temperature, that is to say made of a material whose variation dnf / dT of its refractive index as a function of temperature is at least two times lower than the variation dnSi / dT of the refractive index of silicon as a function of temperature, and - the laser source also comprises: • a device in agreement able to shift the wavelengths ARj in response to an electrical control signal, • a sensor able to measure a physical quantity representative of the difference between the central wavelength ACf and one of the lengths d ARj possible wave, an electronic circuit capable of generating, according to the physical quantity measured by the sensor, the electrical control signal of the tuning device to maintain a wavelength ARj in the center of each bandwidth of the a filter which selects a wavelength λ1, and the width ΔR of the reflecting band of each front and back reflector is: • strictly greater than ΔΛ (+ DT x (dACR / dT) if the filter is arranged to select only one only wavelength ALi, and • strictly greater than Δλ (+ max {DT x (dACR / dT); N x Δν (+ DT x (dACf / dT)} if the filter is arranged to select N wavelengths Au, where DT is the width of a predetermined range of operating temperatures for the laser source, dACR / dT is the variation of the central wavelength ACR of the reflectors as a function of the temperature expressed in nm / ° C., dAcf / dT is the variation of the central wavelength λα of the filter as a function of the temperature expressed in nm / ° C, N is an integer greater than or equal to two, Δν (is the interval between two successive bandwidths of the filter expressed in nanometer and max {...} is the function that returns the largest of the elements located between the braces . [007] To limit the temperature drift of the claimed laser source, the proposed solution consists in producing the filter in a waveguide, no longer made of silicon but in a material that is less sensitive to temperature, and to integrate this filter with the structure of the laser source. Indeed, the fact that the waveguide in which the filter is made is in a material whose variation of the refractive index as a function of the temperature is at least two times slower than the variation of the index of Refraction of the silicon makes it possible to limit the drift in temperature of the filter. In addition, the tuning device, the sensor and the electronic circuit can permanently maintain a wavelength ARj in the center of each bandwidth of the filter which selects a wavelength Au. This has the consequence of reducing the amplitude of the temperature drift of the emission wavelength ALi of the laser source without the need to resort to a device for regulating the temperature of the laser source . [008] The integration into the laser source of this filter is made possible by the implementation of a laser source structure with three waveguides, namely a silicon waveguide, a waveguide material gain lll-V and a waveguide material less sensitive to temperature. This structure with three waveguides in particular makes it possible to circumvent the difficulty that it is difficult to achieve an adiabatic coupling directly between the waveguide of less temperature-sensitive material and the waveguide of gain material. V. Indeed, the materials of these two waveguides generally have large differences in optical refractive index. In the claimed laser source, it is therefore proposed to use a silicon waveguide for coupling, on the one hand, the waveguide of gain material III-V to the silicon waveguide and, d on the other hand, the silicon waveguide to the waveguide of less temperature sensitive material. Thus, the waveguides of gain-lv material and less temperature-sensitive material are coupled to each other via the silicon waveguide. In addition, the presence of the silicon waveguide can be used to make a particularly efficient tuning device. Indeed, the variation of the refractive index of silicon as a function of temperature is important and it is also possible to simply generate free carriers in a silicon waveguide. These two phenomena modify the phase of the optical signal that propagates in the silicon waveguide. [009] Embodiments of this laser source may have one or more of the following features: a laser source emitting only at a single Au wavelength, wherein the filter comprises a resonant ring and the bandwidths of this filter are regularly spaced from each other by an interval Avf greater than the width AR; A laser source emitting simultaneously at several wavelengths Au, in which the filter comprises a resonant ring and the passbands of this filter are regularly spaced from each other by an interval Avt equal to an integer multiple of the AAR interval and strictly less than the width AR; the laser source comprises: a substrate which extends essentially in a plane called a "plane of the substrate", the silicon waveguide which extends parallel to the plane of the substrate inside a first layer; this silicon waveguide guiding the resonant optical signal between the front and back reflectors, - the waveguide in which the resonant ring is formed extends entirely into a second layer disposed above or below the first layer, the waveguide in which the resonant ring is made is optically connected to the silicon waveguide only by evanescent coupling; the laser source comprises: a substrate which extends essentially in a plane called a "plane of the substrate", the silicon waveguide which extends parallel to the plane of the substrate inside a first layer; this silicon waveguide guiding the resonant optical signal between the front and rear reflectors, the waveguide of less temperature-sensitive material extends parallel to the plane of the substrate inside a second layer located above or below the first layer and this waveguide of less temperature-sensitive material being optically connected to the silicon waveguide by evanescent or adiabatic coupling, the waveguide of gain lll-V extends parallel to the plane of the substrate within a third layer on one side of the first layer opposite the side where the second layer is located; the laser source comprises: a substrate which extends essentially in a plane called a "plane of the substrate", the waveguide of gain material III-V comprises an underlayer of III-V material doped with P or N which extends in a plane parallel to the plane of the substrate, the tuning device comprises: a resistor made of the same material and with the same doping as said sub-layer of N-doped or P-doped III-V material; extending above or below the silicon waveguide in the same plane as the underlayer of P or N-doped III-V material, and electrical connection sockets capable of circulating an electric current to the interior of this resistor for heating the silicon waveguide above or below in response to the electrical control signal; the less sensitive material is silicon nitride or aluminum nitride; the tuning device comprises: - a silicon lateral arm which extends, in a lateral direction perpendicular to a longitudinal axis of the silicon waveguide, from the silicon waveguide to a distal portion, this lateral arm having a thickness, in a vertical direction perpendicular to the longitudinal axis, less than the thickness of the silicon waveguide in the same vertical direction, - a resistor situated opposite the distal portion and outside the region where the resonant optical signal guided by the silicon waveguide flows, and electrical contacting to circulate the electrical control signal through the resistor; the front and rear reflectors are at least partly made of the less temperature-sensitive material; the front and rear reflectors are Bragg gratings; the width DT of the predetermined operating temperature range for the laser source is greater than 30 ° C. These embodiments of the laser source further have the following advantages: - The use of a resonant ring as a filter limits the size of the filter and therefore the bulk of the laser source to semi -driver. The use of a resonant ring of which several bandwidths are included inside the reflecting strip of the reflectors makes it possible to simply produce a multi-wavelength laser source. In particular, a single gain material is used for the different emission wavelengths of this multi-wavelength laser source. The use of a resonant ring also makes it possible to directly connect the filter to the silicon waveguide only via an evanescent coupling and without resorting to adiabatic coupling. This makes it possible to reduce the bulk of the laser source by avoiding the use of adiabatic couplers. Indeed, in this case, only the resonant ring is made of a material less sensitive to temperature. The fact of fabricating the filter on one side of a layer containing the silicon waveguides and making, on the opposite side, the gain material waveguide, simplifies the bonding of the layer containing the material. gain on silicon. This also allows a much more accurate burning of the filter. The fact that the tuning device is produced above the silicon waveguide and in the same doped material sub-layer as that used to form the waveguide of gain material simplifies the manufacture of the tuning device. Indeed, the manufacturing operations of the tuning device and the gain material waveguide can then be simultaneously performed. Moreover this type of agreement is without loss for the optical mode of the cavity, unlike the tuning devices making use of PN or PIN junctions made in the silicon waveguide - The use of silicon nitride or silicon Aluminum nitride as a less temperature sensitive material can divide by at least five the sensitivity of the laser source to the temperature. The fact of making the reflectors at least partly in the material that is less sensitive to temperature makes it possible to limit their sensitivity to temperature. This makes it possible to use reflectors whose width AR of the reflective band is smaller. The invention also relates to a method of manufacturing the claimed laser source, this method comprising: - the manufacture of a front reflector and a rear reflector, these front and rear reflectors forming the ends of a Fabry-Pérot optical cavity capable of resonating an optical signal at several possible resonance frequencies, the possible wavelengths ARj of these possible resonant frequencies being regularly spaced from each other by an interval Δλκ and all of them included in FIG. interior of a reflective band of the front and rear reflectors centered on a wavelength ACr and AR width, the manufacture of a set of waveguides optically connecting the front and back reflectors together, this set comprising: a silicon waveguide, • a bandpass filter made in a waveguide and arranged to be traversed by the resonant optical signal between e the front and rear reflectors, this band-pass filter being able to select at least one wavelength Au among the wavelengths ARj, the band-pass filter comprising for this purpose a bandwidth centered on each length of the wavelength. Au wave to be selected, each bandwidth of the filter being centered on a respective central wavelength ACf and having a bandwidth AAf less than or equal to the interval aar, • a waveguide of lll-V gain material capable of generating optical gain at each wavelength ALi selected by the filter and arranged to be traversed by the resonant optical signal between the front and back reflectors, this waveguide being coupled to the silicon waveguide by a adiabatic or evanescent coupling, in which: the manufacture of the set of waveguides comprises the production of the waveguide in which the filter is made of a material that is less sensitive to temperature, that is to say u n material whose variation dnf / dT of its refractive index as a function of the temperature is at least two times lower than the variation dnSi / dT of the refractive index of silicon as a function of the temperature, and - the method also comprises : The manufacture of a tuning device capable of shifting the wavelengths ARj in response to an electrical control signal, the manufacture of a sensor able to measure a physical quantity representative of the difference between the length ACf and one of the wavelengths ARj possible, • the manufacture of an electronic circuit capable of generating, according to the physical quantity measured by the sensor, the electrical control signal of the tuning device. to maintain at least one wavelength ARj in the center of each bandwidth of the filter that selects a wavelength Au, and - the manufacture of the front reflector and the rear reflector also comprises the arrangement of these reflectors so that the width AR of the reflective band of each front and rear reflector is: • strictly greater than Δλ (+ DT x (dACR / dT) if the filter is arranged to select only a single wavelength Au, and • strictly greater than Δλ (+ max {DT x (DCR / dT); N × Δν (+ DT x (dAct / dT)} if the filter is arranged to select N wavelengths Au, where DT is the width of a predetermined range of operating temperatures for the laser source, dACR / dT is the variation of the center wavelength ACR of the reflectors according to of the temperature expressed in nm / ° C, dACf / dT is the variation of the central wavelength λα of the filter as a function of the temperature expressed in nm / ° C, N is an integer greater than or equal to two, Δν (is the interval between two successive bandwidths of the filter expressed in nanometers and max {...} is the function that returns the largest of the elements located between the braces. The embodiments of this method may include the following characteristic: - the manufacture of the front and back reflectors and silicon waveguides in a first silicon layer on the front face of a first SOI substrate ("Silicon on Insulator "), this first SOI substrate comprising a first silicon substrate separated from the first layer by a first silicon oxide layer, and then - before the manufacture of the gain material waveguide, the manufacture of the filter comprises successively: the deposition on a front face of the first layer of a layer made in the material less sensitive to temperature, then the etching of this deposited layer to form the waveguide in which the filter is made, then the encapsulation of the filter in a silicon oxide layer, and finally the polishing of this silicon oxide layer, then - the bonding of the outer face of the polished silicon oxide layer onto a second substrate, then - the removal of the first silicon substrate and at least a portion of the first oxide layer of the first SOI substrate to obtain a bonding face located, with respect to the first silicon layer, on the opposite to that in which the filter is located, then - gluing or depositing a layer of material III-V gain on this gluing surface, then - the manufacture of the waveguide material gain in this layer of material III-V with glued gain. The invention will be better understood on reading the description which follows, given solely by way of nonlimiting example and with reference to the drawings in which: - Figures 1 to 3 are schematic representations of the position of the reflective band of the reflectors of a semiconductor laser source with respect to the passband of the filter of this semiconductor laser source; FIG. 4 is a schematic illustration of the architecture of a semiconductor laser source; FIG. 5 is a diagrammatic illustration in plan view of an example of a resonant ring filter that can be implemented in the laser source of FIG. 4; FIG. 6 is a graph schematically illustrating the position of the reflecting band of the reflectors with respect to the bandwidth of the filter of FIG. 5; - Figure 7 is a schematic illustration, in vertical section, of the filter of Figure 5 in the case where the coupling of the silicon waveguide to the silicon nitride waveguide is by evanescent coupling; FIG. 8 is a diagrammatic illustration, in vertical section, of a first embodiment of the laser source of FIG. 4; Fig. 9 is a flowchart of a method of manufacturing the laser source of Fig. 8; - Figures 10 to 14 are schematic illustrations, in vertical section, of different stages of manufacture of the laser source of Figure 8; Fig. 15 is a flowchart of another method of manufacturing a semiconductor laser source; - Figures 16 to 18 are schematic illustrations, in vertical section, of different stages of manufacture of a semiconductor laser source according to the method of Figure 15; - Figures 19 to 21 are schematic illustrations, in vertical section, of different embodiments of a semiconductor laser source; FIG. 22 is a schematic illustration of various elements of a multi-wavelength laser source; FIG. 23 is a graph schematically illustrating the position of the reflective band of the reflectors of the laser source of FIG. 22 with respect to the passbands of a filter of this laser source; FIG. 24 is a diagrammatic illustration, in vertical section, of a particular embodiment of a tuning device that can be used in a laser source; FIG. 25 is a schematic illustration, in plan view, of the tuning device of FIG. 24; FIG. 26 is a schematic illustration, in plan view, of another embodiment of a filter for the laser source of FIG. 4. In these figures, the same references are used to designate the same elements. In the remainder of this description, the features and functions well known to those skilled in the art are not described in detail. The reason why the realization of the filter in a waveguide of less temperature sensitive material decreases the sensitivity of the laser source to the temperature will first be explained in detail with reference to Figures 1 to 3. Next, the general architecture of a semiconductor laser source using such a filter is described followed by several particular embodiments. FIG. 1 represents a reflective band 4 of the front and rear reflectors of a Fabry-Perot optical cavity of a known semiconductor laser source. This bandwidth 4 is represented on a graph where the abscissa axis represents the wavelength and is expressed in nanometers and the ordinate axis corresponds to the power of the optical signal expressed in watts. The reflective band 4 is characterized by its width AR and its central wavelength ACr. The width AR is the width of the reflective band 4 at -3 dB. This is the wavelength band containing all wavelengths ARj capable of being reflected by the front and rear reflectors with a power greater than or equal to 50% of the maximum power lmax reflected by these reflectors. The power lmax is equal to the power of the reflected optical signal for the wavelength ARj for which this power is maximum. The central wavelength ACR is the wavelength located in the middle of the reflective band 4. In the context of a Fabry-Perot cavity, the different wavelengths ARj which this cavity is likely to resonate are regularly spaced from each other by an AAR interval. In FIG. 1, the wavelengths ARj at which the Fabry-Perot cavity can resonate and which are situated inside the bandwidth 4 are represented by vertical lines. In the context of a monochromatic laser source which emits at a single wavelength Au, the filter selects from among the set of wavelengths ARj possible only one of these lengths ARj. The wavelength ARj selected is equal to the emission wavelength Au of the laser source. For this purpose, the filter has a single narrow bandwidth 6 centered on the wavelength λ. This bandwidth 6 is characterized by its width AAf and by its central wavelength Acf. The width AAf is the width of the bandwidth 6 at -3 dB. The central wavelength ACf is the wavelength located in the middle of the bandwidth 6. To select the only wavelength Au, the width AAfest is less than or equal to the interval AAR. To select the wavelength ALi, one of the wavelengths ARj, typically the closest to ACf, is tuned to be equal to this wavelength ACf. This wavelength ARj which is equal to the wavelength ACf corresponds to the wavelength ALi. The graph of Figure 1 is shown for an operating temperature of the laser source equal to 20 ° C. In known laser sources, the optical signal is guided between the front and rear reflectors by silicon waveguides and lll-V gain materials. The reflectors and the filter are made in the silicon waveguides, and the gain function is performed in the waveguide of materials III-V. Under these conditions, it is known that the wavelengths ARj and the wavelength ACR move as a function of the temperature of about 0.07 nm / ° C. The wavelength ACf also moves about 0.07 nm / ° C. The graph of Figure 2 shows the same elements as the graph of Figure 1, but for an operating temperature of the laser source equal to 33 ° C. It can be seen that the bandwidth 4 and the wavelengths ACr and ARj have shifted by about 0.9 nm (about 0.07 x 13 ° C) and that the bandwidth 6 has moved about 0.9 nm. . The Au wavelength of the laser source has therefore moved about 0.9 nm. To limit this drift of the wavelength Au, the proposed solution consists in producing the filter in a waveguide, no longer in silicon but in a dielectric material that is less sensitive to temperature and integrating such a filter. in the structure of a laser source. Here, a material less sensitive to temperature is a material whose variation dnf / dT of its refractive index as a function of temperature is at least two times lower, under the same conditions, with the variation dnSi / dT of the index refraction of silicon as a function of temperature. Typically, the variation dnSi / dT is equal to 2.3 x 10'4 / ° C to plus or minus 20%. Thus, the dnf / dT variation is at least less than 1 x 10 -4 / ° C and, preferably, less than 0.5 x 104 / ° C. Subsequently, the description is made in the particular case where the material less sensitive to temperature is silicon nitride (Si3N4) whose variation dnf / dT is equal to 0.4 x ΙΟ-4 ΓC. However, as described in detail at the end of this description, other materials are possible. The refractive index of silicon nitride varies with the temperature six to seven times slower than that of silicon. Therefore, the central wavelength ACf of the filter made in a silicon nitride waveguide moves, as a function of temperature, only 0.01 nm / ° C. FIG. 3 represents the position of the reflective band 4 and the bandwidth 6 in the case where the filter is made in a silicon nitride waveguide and for an operating temperature of the laser source of 33. ° C. As shown in the graph of FIG. 3, the central wavelength ACf of the filter moves only 0.13 nm (= 0.01 x 13 ° C) in response to a 13 ° C increase in the operating temperature of the filter. the laser source. On the other hand, the amplitude of the displacement of the central wavelength ACr is the same as in the case represented in FIG. 2. However, the fact of only making the filter in a material that is less sensitive to temperature is already sufficient for very strongly limit the sensitivity of the wavelength ACf to the temperature. However, since it is the filter that selects the emission wavelength Au of the laser source, it becomes possible, after centering a wavelength ARj on the wavelength ACf to obtain a length Au wave emission of the laser source less sensitive to temperature. As will be seen later, in the laser source described, a tuning device, a sensor and an electronic control circuit are used to automatically and correctly center the closest wavelengths ARj in the center of the bandwidth 6 of the filter to obtain the emission of the laser source on the wavelength ALi. Indeed, since the bandwidth 6 of the filter moves much less rapidly than the wavelengths ARj if nothing is done to correctly center one of the wavelengths ARj in the center of the bandwidth 6, this band passante 6 may contain no wavelength ARj or wavelength ARj badly centered, which eliminates the emission of the laser source or strongly limits the power of the optical signal emitted. [0027] FIG. 4 schematically represents the general architecture of a monochromatic semiconductor laser source 10 that emits at the Au wavelength. The laser source 10 includes a rear reflector 12 and a front reflector 14 which define the ends of the Fabry-Perot cavity within which the optical signal resonates. For example, the reflector 12 has a reflection factor strictly greater than that of the reflector 14. The reflection factor is equal to the ratio between the power of the optical signal reflected by the reflector on the power of the optical signal incident on this reflector. Typically, the reflectance of the reflector 12 is greater than or equal to 90% or 95% for the Au wavelength. The reflection factor of the reflector 14 is generally between 30% and 70% and is typically 50%. The reflectors 12 and 14 are broadband reflectors. In this embodiment, this means that the width AR of the reflective band 4 of the reflectors 12 and 14 is strictly greater than AAf + DT x (dACR / dT), where: - AAf is the width of the passband 6 of the filter which selects the wavelength Δλυ, expressed in nanometers, - DT is the width of the predetermined operating temperature range of the laser source 10, expressed in ° C, - dACR / dT is the variation of the central wavelength ACR of reflective strip of reflectors 12 and 14 as a function of temperature, expressed in nm / ° C. The operating temperature range of a laser source is often chosen today so that, regardless of the operating temperature of the laser source located within this range, this does not cause a variation of the wavelength λ1 greater than 0.35 nm. Thus, for example, the width DT of this range is greater than 10 ° C or 30 ° C. To meet this criterion, here the operating temperature range is chosen to be between + 20 ° C and + 55 ° C. The width DT is here equal to 35 ° C. Subsequently, the smallest and largest temperatures of the operating temperature range are noted, respectively, Tmin and Tmax. In this embodiment, the reflectors 12 and 14 are made in a silicon waveguide. Thus, the dACR / dT variation is here equal to 0.07 nm / ° C. As described with reference to FIGS. 1 to 3, the width AAf is smaller than the interval Δλκ. Typically, the AAR interval is less than or equal to 0.5 nm. For example, here the AAR interval is equal to 0.3 nm to 15% or 30%. Thus, in this embodiment, the width AAf is less than or equal to 0.3 nm. The width AR is here strictly greater than 2.75 nm (= 0.07 x 35 + 0.3). The reflectors 12 and 14 are also designed so that, at the temperature Tmin, the wavelength Au is closer to the upper terminal ARmax of the reflecting strip 4 than its lower terminal ARmin. For example, at the temperature Tmin, the wavelength Au is between 0.9 ARmax and ARmax. This constraint can be relaxed if the width AR is much greater than AAf + DT x (DCR / dT). Indeed, in the latter case, for the Au wavelength is contained within the reflective band 4 regardless of the operating temperature of the laser source 10 between Tmin and Tmax, it is not necessary that wavelength Ausoit close to ARmax. Here, the reflectors 12 and 14 are for example reflectors such as Bragg gratings. Between the reflectors 12 and 14, the laser source comprises successively the following photonic components going from the reflector 12 to the reflector 14: - an optical waveguide 15 made of silicon in which the reflector 12 is made, - a device in agreement 16 able to move the wavelengths ARj according to an electrical control signal and by using the properties of the silicon of the waveguide 15, - a bandpass filter 22 able to select the length of the wavelength. Au wave of operation of the laser source 10 among the various wavelengths ARj possible within the Fabry-Perot cavity, this filter 22 being made in a silicon nitride waveguide, a silicon wave 25; an adiabatic coupler 26 which optically connects the waveguide 25 to an input of a waveguide 28 of gain material 111-V; a more well-known semiconductor optical amplifier 30; under the acronym SOA ("Semiconductor Optic al Amplifier ") made in the waveguide 28 and capable of generating and amplifying the resonant optical signal inside the Fabry-Perot cavity at each wavelength ARj, an adiabatic coupler 32 which optically connects an output of the waveguide 28 to the waveguide 25 in the end of which is formed the reflector 14. Subsequently, only the features of the laser source 10 are described in detail. For general information on the design and operation of a semiconductor laser source using silicon waveguides and lll-V gain material, the reader can consult the following article: B. Ben Bakir and al., "Hybrid Si / III-V lasers with adiabatic coupling", 2011. For a detailed description of an adiabatic coupler, the reader is referred to the following article: Amnon Yariv et al., "Supermode Si / lll-V hybrid Lasers, optical amplifiers and modulators: proposai and analysis" Optics Express 9147, vol. 14, No. 15, 23/07/2007. In particular, it is recalled that an adiabatic coupler is capable of transforming a guided optical mode in a first silicon waveguide into an optical mode guided in a second waveguide made of a gain-lll-V material. . In particular, an adiabatic coupler is able to transfer almost all the optical signal present in the first waveguide to the second waveguide above or below, without reflection. For example, the power of the optical signal transferred in the second waveguide is greater than or equal to 95% of the power of the optical signal flowing in the first waveguide. Such an adiabatic coupler is, for example, obtained by modifying the width of the first waveguide relative to the width of the second waveguide. Typically for adiabatic coupling of a silicon waveguide to a waveguide of III-V material, the width of the silicon waveguide is progressively reduced as the waveguide is approaching the material. -V. Conversely, to adiabatically transfer an optical signal from the waveguide material III-V to the first silicon waveguide, the silicon waveguide width is for example gradually increased. In addition, the waveguides of silicon and III-V material generally have a width such that their respective propagation index are equal. This is also true for adiabatic coupling between hybrid Si / III-V waveguides. In this embodiment, the filter 22 is a ring resonant filter whose ring is formed in a waveguide 50 (Figure 5) in Si3N4. Preferably, the waveguide 50 in which the ring is made is directly optically connected to the waveguides 15 and 25 in silicon by evanescent coupling. An evanescent coupling between a silicon waveguide and a silicon nitride waveguide is obtained by bringing these two waveguides closer to one another and by equalizing the propagation indices of the two waveguides. close wave. Evanescent coupling between a first and a second waveguide transfers a fraction of the power of the optical signal present in the first waveguide to the second waveguide. This fraction of the power is adjusted by playing, for example, on the distance between the first and second waveguides. Here, the geometry and the distance between the waveguides 15, 25 and the waveguide 50 in which the ring of the filter 22 is formed are adjusted so that the power of the optical signal transferred between the waveguide silicon and the waveguide 50 is between 5% and 25% and preferably equal to 10% to plus or minus 3% or 1%. The geometries of the waveguides are modified to equalize the propagation indices in the two waveguides. Here the width of the silicon waveguides 15 and 25 is for example reduced over a length L1 and L2 respectively, and that of the waveguide 50 to Si3N4 is not changed. To adjust the coupled power, the distance between the two waveguides 15 and 50 and 25 and 50 is adjusted in a horizontal direction at a calculated distance di, respectively d2, as is described in more detail with reference to FIGS. 7. The use of an evanescent coupling between the waveguide 50 of the ring and the silicon waveguides 15 and 25 makes it possible to limit the bulk of the laser source by avoiding the use of couplers. adiabatic and additional waveguides made of silicon nitride. The adiabatic or evanescent couplings also have the advantage of limiting the reflections of the optical signals at the level of the optical connection between the two waveguides. To generate the electrical control signal of the tuning device 16, the laser source 10 also comprises: a sensor 40 able to measure a physical quantity representative of the difference between the wavelength ACf and the nearest one wavelengths ARj, and an electronic circuit 42 capable of generating the electrical control signal of the tuning device 16 so as to permanently maintain a wavelength λRj at the center of the passband 6 of the filter 22. For this purpose, here, the sensor 40 measures the power of the optical signal emitted by the laser source 10. In this embodiment, the laser source 10 has two possible outputs for the resonant optical signal, namely by crossing the reflector 14 is through the reflector 12. Since the reflectance of the reflector 12 is greater than that of the reflector 14, the optical signal that comes out through the reflector 12 has a much lower power than that which comes out through the reflector 14. Conventionally, the optical signal that passes through the reflector 14 is called "useful optical signal" and the one that comes out through the reflector 14 is called "optical control signal" or "optical monitoring signal". Here, the sensor 40 measures the power of the optical signal passing through the reflector 12. For example, the sensor 40 includes a photodetector which measures the power of the optical signal. The power thus measured is transmitted to the electronic circuit 42. This measured power is representative of the difference between the wavelengths ACf and the nearest of the wavelengths ARj. Indeed, the measured power is maximum when the wavelength λα is aligned with one of the wavelengths ARj. This power decreases continuously as the wavelength ARj moves away from the wavelength ACf as long as one remains within a range of width Δλκ centered on the wavelength ACF. The electronic circuit 42 builds the control signal which maintains a wavelength ARj in the center of the bandwidth 6 as a function of the physical quantity measured by the sensor 40. For this purpose, it is electrically connected to the In addition, it is electrically connected to the tuning device 16 to transmit the generated electrical control signal thereto. Typically, the sensor 40 is made on the same substrate as the other photonic components of the laser source 10 and for example in the gain material III-V. The electronic circuit 42 is often attached to this substrate. FIG. 5 represents in more detail the filter 22 in the case where the latter is produced using a resonant ring, this effect, the waveguide 50 forms a ring directly optically connected, respectively, to the waveguides 15 and 25 only by evanescent couplings. This ring is made of silicon nitride while the waveguides 15 and 25 are made of silicon. In this figure 5 the input and output of the filter 22 are denoted respectively ZZE and ZZS. AT As shown in Figure 6, the transmission spectrum of the filter 22 has several bandwidths regularly spaced from each other. Here, the center frequencies of two successive bandwidths are spaced from each other by an interval Avf. This Avf interval is better known by the acronym FSR ("Free Spectral Range"). In the graph of FIG. 6, only the bandwidth 6 and two bandwidths 52 and 54 located respectively before and after the bandwidth 6 are represented. Here, the dimensions of the filter 22 are determined by numerical simulation or experimentally so that the Avf interval is strictly greater than the AR droplet of the reflective strip 4. Thus, only one of the passbands of the filter 22 is that is, the bandwidth 6 is located inside the reflective band 4 regardless of the operating temperature. Therefore, the filter 22 allows to select only a single wavelength ARj so that the laser source 10 is a monochromatic laser source. In the graph of FIG. 6, the selected wavelength is represented by a vertical bar of abscissa Au. For example, the values of the wavelength ACf and of the interval Avf are fixed from the following parameters: the perimeter of the ring, the propagation index netf in the waveguide 50, the group ng index in the waveguide 50 ("refractive group index" in English) and the resonance order K. By way of illustration, the wavelength ACf and the Avf interval are estimated using the following relationships: where "perimeter" is the perimeter of the ring made in the waveguide 50 and A is the wavelength of the optical signal for which the wavelength ACf and the interval Avf are calculated. The width AAf can be determined by the propagation losses in the waveguide 50 of the ring and the evanescent coupling coefficients of the waveguide 50 with the waveguides 15 and 25. The graph of Figure 6 has been shown in the case where the operating temperature is equal to Tmin. The dotted line 56 represents the position of the reflective band 4 when the operating temperature is equal to Tmax. As illustrated in the graph of FIG. 6, whatever the operating temperature of the laser source between Tmin and Tmax, the bandwidth 6 is always situated inside the reflective band 4 even if the latter moves because of temperature variations. In the graph of FIG. 6, the slight displacement of the bandwidth 6 as a function of the temperature has not been represented. The dimensions of the filter 22 are also determined to obtain the desired properties of the evanescent couplings between the waveguide 50 of the ring and the waveguides 15 and 25 and in particular the power transfer rate between them. waveguides 15, 25 and and the waveguide 50. For example, the dimensions of the filter 22 determined are chosen in particular from the following dimensions: the radius of the ring R, the lengths L1 and L2 on which the widths of the waveguides 15 and 25 are reduced so as to equalize the propagation indices in the waveguides 15 and 25 and 50, the distances di and d2, the thicknesses eA, eAf and the width LA of the waveguides 15 and 25; waveguide 50 of the filter 22, the thickness eG and the width LG of the waveguides 15 and 25 in the case of an evanescent coupling, the vertical space eAG in silicon oxide which separates the waveguide, wave 50 and the waveguides 15 and 25. The dimensions L1 and L2 are shown in FIG. 5. The dimensions di, d2, eG, LG, eAG, eA eAf, and LA are represented in a vertical section passing through the center of the ring 50 and perpendicular to the guides of FIG. 15 and 25 in FIG. 7. In this section, the waveguides 15 and 25 and 50 are located in respective horizontal layers superimposed one above the other in the vertical direction. These layers are parallel to the plane in which extends mainly a substrate 60, on which the different layers used to manufacture the laser source 10 are stacked. This plane is subsequently called the "substrate plane". In the following figures, the plane of the substrate is always horizontal. By way of illustration, typically: the distances di and d2 are between 0 pm and 3 pm, the thickness eG is between 100 nm and 500 nm, the width LG is between 100 nm and 500 nm, the thickness eAG is between 0 nm and 200 nm, the thickness eA is between 50 nm and 700 nm, the width LA is between 500 nm and 1 μm, the radius of the ring 50 is between 3 pm and 100 pm. For example, to obtain a power transfer rate of 10% between the waveguide 15 and the waveguide 50 of the ring, possible dimensions are as follows: R = 30 μm, L1 = 60 pm, eG = 300 nm, eAG = 50 nm, LG = 180 nm, eA = 500 nm, eAf = 50 nm, LA = 700 nm, di = 1.1 pm. FIG. 8 represents a first exemplary embodiment of the laser source 10. The laser source 10 is produced using the same manufacturing processes as those used to manufacture CMOS components ("Complementary Metal-Semi Oxide"). -conductor "). Here, the laser source 10 is fabricated on the horizontally extending silicon substrate 60. In Figure 8, the laser source 10 comprises successively stacked above the substrate 60 from bottom to top: - a layer 64 of silicon nitride encapsulated in silicon oxide and which contains the guide 50, a layer 66 of silicon encapsulated in silicon oxide in which are formed the waveguides 15 and 25 and the reflectors 12 and 14, a layer 68 comprising the waveguide 28 to inside which the amplifier 30 is made. The adiabatic couplers 26 and 32 are made partly in the waveguide 25 and in the waveguide 28. Preferably, the amplifier 30 is a broadband amplifier, that is to say capable of generating and amplifying a large range of wavelengths. This range includes the wavelength Au. Typically, it is centered on this wavelength ALi at the temperature (Tmax + Tmin) / 2. The width of this wavelength range at -3 dB is for example at least 10 nm or 25 nm or 35 nm and remains wide with the increase in temperature. For example, the III-V materials constituting the amplifier 30 are those described in the following article: Dimitris Fitsios et al. "High-gain 1.3 micron GalnNAs semiconductor optical amplifier with enhanced temperature stability for all-optical processing at 10 Gb / s," Applied optics, May 2015 vol. 54, No. 1, January 1, 2015. Realizing the amplifier 30 as described in this article allows in addition to obtain a broadband amplifier stable in temperature. This improves the operation of the laser source and in particular it makes it possible to maintain power emitted by the laser source almost constant over the entire operating temperature range [Tmin; Tmax]. In this case, the waveguide 28 and the amplifier 30 are in the form of a stack of alternating layers of GalnNAs and GaNAs interposed between a lower underlayer 70 and an upper sub-layer. P-doped GaAs. Underlayer 70 is an underlayer of dopant III-V material opposed to the upper sublayer. For example, here it is an N-doped GaAs sublayer. The amplifier 30 comprises, in addition to the waveguide 28, a plug 74 directly in mechanical and electrical contact with the portion of the sub-layer 70 located under the stack of sub-layers GalnNAs and GaNAs. The P-doped GaAs sublayer is in mechanical and electrical contact with a receptacle 76 for electrically connecting the upper portion of the amplifier 30 to a potential. When a current greater than the threshold current of the laser is applied between the jacks 74 and 76, the amplifier 30 generates and amplifies the optical signal that resonates inside the Fabry-Perot cavity. The tuning device 16 is here a heater adapted to heat the waveguide 15 to move the wavelengths ARj. In this embodiment, the tuning device 16 comprises a resistor 80 electrically connected to two receptacles 82 and 84 of electrical contact for circulating a current in this resistor 80 so as to transform the electrical energy into heat . These sockets 82 and 84 are electrically connected to a source of current or voltage controlled by the electronic circuit 42 as a function of the measurements of the sensor 40. The control of the tuning device 16 thus consists in regulating the electrical power that flows through the resistor 80. To circulate a current in the resistor 80 makes it possible to heat the waveguide 15 and thus to move the wavelengths λκ]. The resistor 80 is here a band made in the sub-layer 70. This band is therefore an N-doped GaAs band. In this embodiment, it is logically located above the waveguide 15 whose index variation dnSi / dT is significantly higher than the index variation dnf / dT. The tuning device 16, the waveguide 28 and the amplifier 30 are covered with a protective envelope 90 which mechanically isolates them from the outside. Only the plugs 74, 76, 82, 84 protrude beyond the casing 90. For example, the casing 90 is made of silicon nitride. The path of the resonant optical signal in the laser source 10 is shown in FIG. 8 by a double arrow. A method of manufacturing the laser source 10 will now be described with reference to the method of Figure 9 and using Figures 10 to 14. In a step 100, the method begins with the provision of a SOI substrate 102 (Silicon-On-Insulator). This substrate 102 (FIG. 10) successively comprises the following layers stacked one above the other from bottom to top: a substrate 104 made of silicon, a layer 106 of silicon oxide, and the layer 66 of silicon. In a step 110, the waveguides 15 and 25 and the reflectors 12 and 14 are manufactured in the silicon layer 66. For example, they are produced by photolithography and etching of this layer 66. In this step, the parts of the couplers 26 and 32 that are in the layer 66 are also produced. In a step 112, the layer 66 is encapsulated in a layer 114 (FIG. 11) of silicon oxide. This layer 114 is polished, that is to say planarized, for example, by a physico-chemical polishing process, better known by the acronym CMP ("Chemical Mechanical Planarization"), in order to planarize the upper face of this layer 114. In a step 116, a silicon nitride layer is deposited on the upper face of the layer 114. Next, this silicon nitride layer is etched to form the waveguide 50 and then encapsulated in the silicon oxide. In FIG. 12 and following, to simplify these figures, the waveguide 50 is represented in the form of a block of silicon nitride. The layer 64 (FIG. 12) of silicon nitride encapsulated in silicon oxide is then obtained. The upper face of the layer 64 is then polished, for example, as described with reference to step 112. In a step 120, a substrate 122 (FIG. 13) is bonded to the silicon oxide outer face of the layer 64. The substrate 122 is a silicon substrate which comprises a thick layer of oxide at the top. of silicon. It is these layers of silicon oxide that are glued to one another. In a step 124, the silicon layer 104 is removed, and the layer 106 is thinned to leave only a thin intermediate layer 126 (Figure 14) of silicon oxide. The outer face of the layer 126 is polished as described with reference to step 112. In a step 128, the layer 68 of gain material III-V is bonded or deposited on the layer 126. For example, the layer 68 (Figure 8) of gain material III-V is glued on the outer face of the layer 126. The layer 68 comprises the lower sub-layer 70, the stack of alternating sub-layers GalnNAs and GaNAs and the doped upper sublayer. Once step 128 is performed, during a step 130, the layer 68 is etched to produce the waveguide 28, the amplifier 30 and the resistor 80. Typically, during a first etching the upper sub-layers of the layer 68 are etched to structure the amplifier 30. Then, during a second etching, the sub-layer 70 is etched to finalize the amplifier structuring 30 and to realize the resistor 80. Finally, during a step 132, the envelope 90 and the catches 74, 76, 82 and 84 are made. The laser source is obtained, a sectional view of which is shown in FIG. FIG. 15 represents a second method of manufacturing a laser source 150 (FIG. 18). This process starts with the steps 110 and 112 already described with reference to the method of FIG. 9. Then, it continues with a step 152 where a layer identical to the previously described layer 68 is glued or deposited on the layer 114 (Figure 16). Typically, this layer is bonded by molecular bonding. Then, during a step 158, this layer is etched to produce the waveguide 28, the amplifier 30, the resistor 80 and an additional resistor 154 (Figure 16). For example, this is done as described with reference to step 128. The resistor 154 is used to make a tuning device 156 (FIG. 18), for example identical to the tuning device 16, except that it makes it possible to move the reflective band 4 of the reflector 14 as a function of a electrical control signal generated by the electronic circuit 42. This electrical control signal of the tuning device 156 is typically generated according to the measurements of the sensor 40. This reduces if necessary the width AR of the reflective strip reflectors. For example, in this case, it can be as small as N x Avf. The resistor 154 is located above the reflector 14. In a step 160, the protective envelope 90 is made. During this step, the waveguide 50 is manufactured in the casing 90 which is made of silicon nitride. For example, the waveguide 50 is manufactured by photolithography and etching of the envelope 90 near the ends of the waveguides 15 and 25 (FIG. 17). In a step 162, the catches 74, 76, 82 and 84 are manufactured. Contacts 163 and 166 which mechanically and electrically connect the resistor 154 are also fabricated to circulate a current in this resistor 154. The combination of the resistor 154 and the receptacles 164 and 166 form the tuning device 156. The result is then the laser source 150 shown in Figure 18. In FIG. 18, the path of the resonant optical signal in the laser source 150 is represented by a double arrow. The laser source 150 is identical to the laser source 10, except that the waveguide 50 and the waveguide 28 are both arranged on the same side of the layer 66. In addition, in the laser source 150, the reflectors 12 and 14 are turned upwards and not downwards, as in the laser source 10. This makes it possible to connect the output of the reflector 14 to an optical fiber arriving from above the laser source 150. The operation of the laser source 150 is the same as that of the laser source 10, except that the electronic circuit 42 is here also adapted to control the tuning device 156 so as to additionally grant the reflectors 12 and 14. FIG. 19 represents a laser source 180 identical to the laser source 10, except that: - the reflectors 12 and 14 are replaced by, respectively, reflectors 182, 184, and - the tuning device 16 is located, for example, above the waveguide 25 and no longer above the waveguide 15. The reflectors 182, 184 are identical, respectively, to the reflectors 12 and 14 except that they are made in the same silicon nitride layer as the waveguide 50. For example, here, the reflector 182 is realized at one end of a silicon nitride waveguide 186 whose other end is optically connected to the waveguide 50 of the ring of the filter 22 by evanescent coupling. As a result, the waveguide 15 is omitted. The waveguide 50 of the ring is optically connected to the waveguide 25 by evanescent coupling as previously described. Similarly, the reflector 184 is formed at the end of a silicon nitride waveguide 188 whose other end is optically connected by adiabatic coupling to the waveguide 25. In this case, preferably, the width AR of the reflective band of the reflectors 182 and 184 is greater than DT x (dACf / dT). The couplers which optically connect the waveguides 25 and 28 to each other are adiabatic couplers. It may be noted that the fact of making the reflectors 182 and 184 in a silicon nitride waveguide makes it possible to reduce their bandwidth. This also makes it possible to reduce the Avf interval of the filter 22 to obtain a monochromatic laser source. In FIG. 19, the path of the resonant optical signal is represented by a double arrow. The laser source 180 has the advantage that the reflective band 4 of the reflectors 182 and 184 moves much less rapidly than in the laser sources 10 or 150. In fact, in this embodiment, the variation dΔCR / dT of the central wavelength ΔCR is equal to the variation dACf / dT. Thus, regardless of the variation in temperature, the bandwidth 6 always remains inside the reflective band 4 and does not move relative to the upper and lower limits of this reflective band 4. The width AR of the reflective band 4 can then be reduced. Typically, the width AR is then strictly greater than DT x dAcf / dT + Δλ ,. FIG. 20 represents a laser source 190 identical to the laser source 180, except that the reflectors 12 and 14 are replaced by reflectors 192 and 194 partly made in the layer 64 and partly in the layer 66. Thus, the reflectors are made partly of silicon nitride and partly of silicon. Typically, each reflector 192 and 194 is formed of two Bragg gratings facing each other, one in the silicon nitride waveguide and one in the silicon waveguide. FIG. 21 represents a laser source 200 identical to the laser source 150, except that the tuning device 16 is replaced by a tuning device 202. The tuning device 202 comprises a P or N doped section forming a resistor 204 made in one of the waveguides 15 or 25. In FIG. 21, the section 204 is made in the waveguide 15. The tuning device 202 also has sockets 206 and 208 for connection the resistance 204 to the electronic circuit 42. The operation of the laser source 200 is deduced from that of the laser source 150. Figure 22 shows a laser source 220 N-wavelengths or polished-chromatic. The laser source 220 is identical to the laser source 10, except that the filter 22 is replaced by a filter 222, and the reflectors 12 and 14 are replaced, respectively, by reflectors 224 and 226. The filter 222 is identical to the filter 22, except that the dimensions of the filter 222 are modified so that it has several bandwidths located simultaneously inside the reflective strip of the reflectors 224 and 226. In this case, embodiment, the filter 222 is a resonant ring formed in the waveguide 50 optically connected to the waveguides 15 and 25 by evanescent couplings. In the graph of FIG. 23, three bandwidths 230 to 232 of the filter 222 are represented as being situated inside the reflective band 228 of the reflectors 224 and 226. The central wavelengths of these bandwidths are noted respectively, ACfi, Ace, and Ace. In the case of a multi-wavelength laser source, the symbol ACf is used to designate any one of the central wavelengths Acfi, Acf2, and ACf3. Each of these bandwidths 230 to 232 is for example identical to the bandwidth 6. In addition, the interval Avf between two of these successive bandwidths is an integer multiple of the AAR and strictly less than the width AR of the bandwidth. reflective tape 234. Preferably, the width AR of the reflective strip 234 of the reflectors 224 and 226 is: greater than DT x (dACR / dT) if N x Avf <DT x (dACR / dT), and - greater than N x Avf + DT x (dACf / dT) if N x Avf> DT x dACR / dT, where N is an integer greater than or equal to two and equal to the number of wavelengths ARj selected by the filter 222. The operation of the laser source 220 is identical to that of the laser source 10 except that it simultaneously emits N wavelengths noted here Au, AL2 and λ [_3]. [0096] FIGS. Mating device 236 which can advantageously replace the device 16. FIG. 24 is a view, in vertical section, of the device 236 along a transverse cutting plane perpendicular to the waveguide 15. Like the device 16, the device 236 is adapted to heat the silicon waveguide 15 as a function of an electrical control signal. The device 236 comprises two heaters 237 and 238 symmetrical to one another with respect to a vertical plane 239 (FIG. 24) passing through the center of the waveguide 15. To simplify the description, only the heater 237 is described. in detail. The heater 237 comprises, for example, the same elements as the device 16. In particular, it comprises a resistor 240 made in the underlayer 70 and two contact sockets 242A and 242B for circulating a current in the resistor 240. Figure 24, only a plug 242A is visible. The heater 237 further comprises a lateral arm 244 made of silicon in the layer 60 is in thermal continuity with the waveguide 15. This arm 244 extends in a horizontal transverse direction from the waveguide 15 towards the left. Its thickness in the vertical direction is less than that of the waveguide 15. More precisely, its dimensions are such that the optical signal can not propagate inside the arm 244 and remains mainly confined inside the body. a zone 245 which surrounds the waveguide 15. At its end opposite to the waveguide 15, in this embodiment, the arm 244 has a distal portion 246 opposite the resistor 240. distal 246 is separated from the resistor 240 by a thin silicon oxide layer eSp thick. Typically, the thickness eSp is equal to the thickness of silicon oxide that separates the waveguide 28 from the waveguide 25. For this purpose, the distal portion 246 forms a bulge. Here, the thickness of the distal portion 246 is equal to the thickness of the waveguide 15. The arm 244 forms a single block of material with the waveguide 15. During operation of the device 236, the resistor 240 preferentially heats the distal portion 246 and then, by thermal conduction through the arm 244, the heat is transmitted to the waveguide 15. The waveguide 15 heats so in turn what makes vary its refractive index. In this embodiment, resistor 240 is placed outside zone 245 where the resonant signal flows. In particular, the resistor 240 is not located, in the vertical direction, above and in relation to the waveguide 15. Thus, the optical losses are limited while still being able to effectively heat this waveguide. . Indeed, by comparison, in the device 16, the resistor 80 is vis-à-vis the waveguide 15 and is inside the zone 245 which causes optical losses. Here, the heater 237 does not directly heat the waveguide 15 but heats it mainly through the arm 244 which carries no optical signal. FIG. 26 represents a filter 260 that can be used in place of the filter 22. The filter 260 comprises: a waveguide 262 made of silicon nitride forming a resonant ring, two waveguides 264 and 266 silicon nitride located in the same plane as the waveguide 262 and optically connected to the waveguide 262 by respective evanescent couplings. Typically, the evanescent coupling ratio between the waveguide 262 and the waveguides 264, 266 are the same as those described in the case of the filter 22. The two waveguides 264, 266 are connected. optically via adiabatic couplers 268 and 270, respectively, to waveguides 15 and 25. In this embodiment, waveguide 262 is not directly optically connected to waveguides 15 and 25. but connected to these waveguides via waveguides 264 and 266 of silicon nitride. [00101] Many other embodiments are possible. For example, the tuning device 16 or 156 may be omitted. Conversely, an additional tuning device, such as the tuner 156, may be added in any of the previously described embodiments for moving the reflective band of the reflectors. [00102] The tuning device is not necessarily a heater. For example, it is also possible to use as a tuner device a PN junction made in one of the silicon waveguides. The refractive index of the silicon at this PN junction varies as a function of the polarization of this junction. The electronic control signal of the tuning device then varies the polarization of this PN junction. This way of varying the refractive index of silicon is for example described in more detail in the following article: GT Reed et al., "Silicon optical modulators", Natures photonics, Vol 4, August 2010. [00103] The reflection factors of the front and rear reflectors may also be equal. If the filter 22 of the laser source 180 is replaced by the filter 222, then the width AR of the reflective band of the reflectors 182 and 184 can be reduced. However, it is preferably greater than N x Avf + DT x (dACf / dT), where N is an integer greater than or equal to two and equal to the number of wavelengths ARj selected by the filter 222. [00105] Other embodiments of the waveguide 28 and the amplifier 30 are possible. Typically, the waveguide 28 comprises successively, away from the substrate 60: a doped lower sublayer, a quaternary quantum well stack and a doped upper sublayer of opposite sign to the lower sublayer. The doped sub-layer 70 may be made of other materials such as N-doped or R-doped InP. In this case, the quantum well stack comprises sub-layers of InGaAsP or GalnNAs or others. For an exemplary embodiment of a temperature-stable broadband amplifier in which the sublayer 70 is made of InP, the reader can refer to the following article: K. Morito et al., "GainNAs / InP Tensile- Strained Bulk Polarization-Insensitive SOA ", ECOC2006, IEEE. When the lower and upper sublayers are GaAs, the quantum well stack can be realized with AIGaAs sublayers. The doping of the upper and lower sub-layers can be reversed. In a variant, the waveguide 28 and the amplifier 30 are optically connected to the waveguides 15 and 25 by an evanescent coupling. In this case, the adiabatic couplers 26 and 32 are omitted. Such an optical connection between the amplifier and silicon waveguides is for example described in the following article: AW Fang et al., "Electrically pumped hybrid AIGalnAs-silicon evanescent laser", Optics Express, Vol. 14, pp. 9203-9210 (2006). [00107] Other embodiments of the sensor 40 are also possible. For example, alternatively, the sensor 40 is replaced by a sensor of the operating temperature of the laser source. Indeed, at each operating temperature of the laser source, it is possible to associate a difference between the wavelengths ACf and ARj. In this case, for example, the electronic circuit 42 comprises a pre-recorded table which associates at several operating temperatures of the laser source, the characteristics of the electrical control signal to be generated to maintain the wavelength Au in the center of the bandwidth 6 of the filter. For example, this pre-recorded table is built experimentally. The temperature of the laser source can be measured using a transducer, such as a PN junction. Indeed, the electrical characteristics of a PN junction varies depending on the temperature. [00108] In a variant, the heater 238 is omitted. In this case, the device 236 is no longer symmetrical with respect to the plane 239. In another variant, the bulge 246 is omitted. [00109] Other embodiments of the filter are possible. For example, the resonant ring may be replaced by a wavelength multiplexer better known by the acronym AWG ("Array Waveguide Grating"). In the latter case, the filter is coupled to the silicon waveguide by adiabatic couplers such as adiabatic couplers 268 and 270 shown in FIG. 26 and no longer by evanescent coupling. It is also possible to use other materials than silicon nitride. For example, it is also possible to use aluminum nitride as a less sensitive material. A laser source that emits at several Au wavelengths can also be produced as described, for example, with reference to FIGS. 2 or 6 of the following article: Katarzyna Lawmiczuk et al. "Design of integrated photonic transmitter for fiber-to-the-home systems", Photonics Applications in Astronomy, Communications, Industry and High-Energy Physics Experiments 2010 Proceedings of SPIE, vol 7745, 2010. In this case, the filter is a demultiplexer multiplexer known by the acronym AWG ("Array Waveguide Grating"). It is then this AWG component that is made in the material less sensitive to temperature. [00112] Other manufacturing methods are possible. For example, the method described with reference to Figure 17 of the following article can easily be adapted to manufacture a laser source such as the laser source 150: Martijn JR Heck et al, "Ultra-low loss waveguide platform and its integration with Silicon photonics ", Laser photonics rev. 8, No. 5, pages 667-686 (2014). More specifically, the waveguide 50 is manufactured in a first substrate. Then, a second SOI substrate is adhered to the first substrate. The waveguides 15 and 25 are then made in the silicon layer of this second substrate. Finally, the layer 68 is glued over the silicon waveguide and the amplifier 30 is made in this layer 68. In another embodiment, the intermediate layer 126 is obtained by removing the entire layer 106, and then depositing on the layer 66 exposed a layer of silicon oxide. Finally, the order in which the different photonic components inside the Fabry-Perot cavity are arranged can be modified. For example, the filter 22 may be placed between the coupler 32 and the reflector 14. The tuning device 236 may be used in any semiconductor photonic system where it is necessary to heat an optical waveguide by limiting losses. In particular, it can be used to heat a waveguide of another system than a laser source. This other system can be a phase modulator or intensity of an optical signal.
权利要求:
Claims (13) [1" id="c-fr-0001] A semiconductor laser source capable of emitting at least one Au wavelength, said laser source comprising: - a front reflector (14; 194; 222) and a rear reflector (12; 182, 184; 192; 224), these front and rear reflectors forming the ends of a Fabry-Perot optical cavity capable of resonating an optical signal at several possible resonance frequencies, the possible wavelengths ARj of these possible resonance frequencies being regularly spaced apart from each other by an interval ΔλΡ and all included inside a reflective band of the front and rear reflectors centered on a wavelength ACr and of width AR, - a set of waveguides optically connecting the reflectors front and back together, this assembly comprising: a silicon waveguide (15, 25), a bandpass filter (22; 222; 260) made in a waveguide (50) and arranged to to be crossed by the e resonant optical signal between the front and rear reflectors, this band-pass filter being able to select at least one wavelength Au among the wavelengths ARj, the bandpass filter comprising for this purpose a bandwidth centered on each wavelength Au to be selected, each bandwidth of the filter being centered on a respective central wavelength λα and having a width ΔΛ (of band less than or equal to the interval Δλρ, • a waveguide (28 ) in gain material lll-V able to generate optical gain at each wavelength λ Li selected by the filter and arranged to be traversed by the resonant optical signal between the front and rear reflectors, this waveguide being coupled optically to the silicon waveguide by adiabatic (26, 32) or evanescent coupling, characterized in that: - the waveguide (50; 262) in which the filter (22; 222; 260) is made of a material that is less sensitive to temperature, that is to say made of a material whose variation dnf / dT of its refractive index as a function of the temperature is at least two times lower than the variation dnSi / dT of the refractive index of silicon as a function of temperature, and the laser source also comprises: a tuning device (16; 202; 236) adapted to shifting the wavelengths λ RJ in response to an electrical control signal, • a sensor (40) able to measure a physical quantity representative of the difference between the central wavelength ACf and one of the wavelengths At Rj possible, • an electronic circuit (42) capable of generating, as a function of the physical quantity measured by the sensor, the electrical control signal of the tuning device for maintaining a wavelength ARj in the center of each bandwidth of the filter that selects a length of one of Au, and - the width AR of the reflective band of each front and rear reflector is: • strictly greater than ΔΛ (+ DT x (dACR / dT) if the filter is arranged to select only a single Au wavelength, and • strictly greater than AAf + max {DT x (dACR / dT); N x Avf + DT x (dAct / dT)} if the filter is arranged to select N wavelengths ALi, where DT is the width of a predetermined range of operating temperatures for the laser source, dACR / dT is the variation of the central wavelength ACR of the reflectors as a function of the temperature expressed in nm / ° C, dAct / dT is the variation of the central wavelength ACt of the filter as a function of the temperature expressed in nm / ° C , N is an integer greater than or equal to two, Avf is the interval between two successive bandwidths of the filter expressed in nanometers and max {...} is the function that returns the largest of the elements located between the braces. [2" id="c-fr-0002] 2. Laser source according to claim 1 emitting only at a single wavelength ALi, wherein the filter (22; 260) comprises a resonant ring and the bandwidths of this filter are regularly spaced from each other by an interval Avf greater than the width AR. [3" id="c-fr-0003] 3. Laser source according to claim 1 emitting simultaneously at several wavelengths ALi, wherein the filter (222) comprises a resonant ring and the bandwidths of this filter are regularly spaced from each other by an interval Av (equal to an integer multiple of the interval Δλκ and strictly less than the width AR. [4" id="c-fr-0004] 4. laser source according to any one of claims 2 to 3, wherein the laser source comprises: - a substrate (60) which extends essentially in a plane called "plane of the substrate", - the waveguide ( 15, 25) extending parallel to the plane of the substrate within a first layer (66), said silicon waveguide guiding the resonant optical signal between the front and back reflectors, - the guide wave (50; 262) in which the resonant ring is formed extends entirely into a second layer (64) disposed above or below the first layer (66), the waveguide (50) 262) in which the resonant ring is connected optically to the silicon waveguide (15, 25) only by evanescent coupling. [5" id="c-fr-0005] A laser source according to any one of the preceding claims, wherein the laser source comprises: - a substrate (60) which extends essentially in a plane called "plane of the substrate", - the waveguide (15, 25) which extends parallel to the plane of the substrate within a first layer (66), this silicon waveguide guiding the resonant optical signal between the front and back reflectors, - the guide of wave (50; 262) of less temperature-sensitive material extends parallel to the plane of the substrate within a second layer (64) above or below the first layer and this guide wave of less temperature-sensitive material being optically connected to the silicon waveguide by evanescent or adiabatic coupling, the waveguide (28) of gain material III-V extends parallel to the plane of the substrate to the interior of a third layer (68) located on one side of the first layer opposite the side where the second layer is located. [6" id="c-fr-0006] Laser source according to any one of the preceding claims, wherein the laser source comprises: - a substrate (60) which extends essentially in a plane called "plane of the substrate", - the waveguide (28 ) in gain material III-V comprises an underlayer (70) of P or N doped III-V material which extends in a plane parallel to the plane of the substrate, the tuning device (16) comprises: a resistor (80) made of the same material and with the same doping as said sub-layer (70) made of N + or P-doped III-V material, this resistor extending above or below the waveguide (15, 25) made of silicon in the same plane as the sub-layer (70) made of P or N-doped lll-V material, and electrical connection sockets (82, 84) able to circulate an electric current to the interior of this resistor for heating the silicon waveguide above or below in response to the electrical control signal. [7" id="c-fr-0007] Laser source according to any one of the preceding claims, wherein the less temperature sensitive material is silicon nitride or aluminum nitride. [8" id="c-fr-0008] A laser source according to any one of the preceding claims, wherein the tuning device (236) comprises: - a lateral arm (244) of silicon extending in a lateral direction perpendicular to a longitudinal axis of the guide silicon waveguide, from the silicon waveguide to a distal portion (246), said lateral arm having a thickness, in a vertical direction perpendicular to the longitudinal axis, less than the thickness of the waveguide. a silicon wave in the same vertical direction; a resistor (240) located opposite the distal portion (246) and outside the region where the waveguide-guided resonant optical signal is flowing; in silicon, and - electrical contact sockets (242) for circulating the electrical control signal through the resistor. [9" id="c-fr-0009] A laser source according to any one of the preceding claims, wherein the front and rear reflectors (182, 184, 192, 194) are at least partly made of the less temperature sensitive material. [10" id="c-fr-0010] Laser source according to any one of the preceding claims, wherein the front and rear reflectors (12, 14; 182, 184; 192, 194) are Bragg gratings. [11" id="c-fr-0011] Laser source according to any one of the preceding claims, wherein the width DT of the predetermined operating temperature range for the laser source is greater than 30 ° C. [12" id="c-fr-0012] 12. A method of manufacturing a laser source according to any one of the preceding claims, this method comprising: - the manufacture (110) of a front reflector and a rear reflector, these front and rear reflectors forming the ends an optical cavity of Fabry-Pérot capable of resonating an optical signal with several possible resonance frequencies, the possible wavelengths ARj of these possible resonance frequencies being regularly spaced from each other by an interval Δλκ and all included within a reflective band of the front and rear reflectors centered on a wavelength ACR and of width AR, - the fabrication (110, 116, 128; 152, 158, 160) of a set of waveguides wave connecting optically the front and back reflectors together, this set comprising: • a silicon waveguide, • a bandpass filter made in a waveguide and arranged to be traversed by the resonant optical signal between the front and rear reflectors, this bandpass filter being able to select at least one wavelength Au among the wavelengths ARj, the bandpass filter comprising for this purpose a bandwidth centered on each Au wavelength to be selected, each bandwidth of the filter being centered on a respective central wavelength ACf and having a bandwidth AAf less than or equal to the interval AAr, • a waveguide in FIG. gain material lll-V able to generate optical gain at each wavelength ALi selected by the filter and arranged to be traversed by the resonant optical signal between the front and rear reflectors, this waveguide being coupled to the guide of silicon wave by an adiabatic or evanescent coupling, characterized in that: - the manufacture of the waveguide assembly comprises the fabrication (116, 160) of the waveguide in which is realized the filter made of a material that is less sensitive to temperature, that is to say a material whose variation dnf / dT of its refractive index as a function of temperature is at least two times smaller than the variation dnSi / dT of the refractive index of silicon as a function of temperature, and - the method also comprises: • the manufacture (128) of a tuning device capable of shifting the wavelengths ARj in response to an electrical control signal, The manufacture (130) of a sensor capable of measuring a physical quantity representative of the difference between the central wavelength ACf and one of the possible wavelengths ARj, the fabrication (130) of a electronic circuit capable of generating, as a function of the physical quantity measured by the sensor, the electrical control signal of the tuning device for maintaining at least one wavelength ARj in the center of each passband of the filter which selects a length of d Au wave, and - the fabr ication (110) of the front reflector and the rear reflector also comprises the arrangement of these reflectors so that the width AR of the reflective band of each front and rear reflector is: • strictly greater than AAf + DT x (dACR / dT) if the filter is arranged to select only a single wavelength ALi, and • strictly greater than Δλ (+ max {DT x (dAcR / dT); N x Δν (+ DT x (dACf / dT)} if the filter is arranged to select N wavelengths Au, where DT is the width of a predetermined range of operating temperatures for the laser source, dACR / dT is the variation of the central wavelength ACr of the reflectors as a function of the temperature expressed in nm / ° C, dACf / dT is the variation of the central wavelength λα of the filter as a function of the temperature expressed in nm / ° C, N is an integer greater than or equal to two, Δν (is the interval between two successive bandwidths of the filter expressed in nanometer and max {...} is the function that returns the largest of the elements located between the braces . [13" id="c-fr-0013] The method of claim 12, wherein the method comprises: - fabricating (110) the front and back reflectors and silicon waveguides in a first silicon layer on the front face of a first SOI substrate (" Silicon on Insulator "), this first SOI substrate comprising a first silicon substrate separated from the first layer by a first silicon oxide layer, and then - before the manufacture of the gain material waveguide, the manufacture of the filter comprises successively: the deposit (116) on a front face of the first layer of a layer made in the material less sensitive to temperature, then the etching of this layer deposited to form the waveguide in which the filter is made , then the encapsulation of the filter in a silicon oxide layer, and finally the polishing of this silicon oxide layer, then - the bonding (120) of the outer face of the polished silicon oxide layer r a second substrate, then - removing (124) the first silicon substrate and at least a portion of the first oxide layer of the first SOI substrate to obtain a bonding face located, relative to the first layer of silicon, the opposite side to that where the filter is, then - the bonding or deposit (128) of a layer of material III-V gain on this bonding surface, and - the manufacture (130) of the guide of wave material gain in this layer of material III-V glued gain.
类似技术:
公开号 | 公开日 | 专利标题 EP3190672B1|2018-04-18|Semiconductor laser source EP3206079B1|2018-07-11|Photonic transmitter EP1909080B1|2009-05-06|Ultrasensitive optical detector having a high temporal resolution and using a grating. EP1364190B1|2008-09-17|Optoelectronic device with wavelength filtering by cavity coupling EP0033048B1|1984-12-05|Interferometer with tunable optical cavity comprising a monomodal optical fibre, and its application to filtration and spectrography FR2909491A1|2008-06-06|Laser device for forming high speed optical link, has guiding structure with portion that delivers light generated by transmitting structure that is in III-V or in II-VI technology, where guiding structure is in silicon technology EP1474711B1|2005-08-17|Tunable optical filter component EP3540878B1|2020-10-14|Photonic device including a laser optically connected to a silicon waveguide and method for manufacturing such a photonic device EP3734353A1|2020-11-04|Modulator of propagation losses and of the propagation index of an optical signal FR2857159A1|2005-01-07|RESONANT VERTICAL CAVITY PHOTODETECTOR, MATRIX AND CORRESPONDING TELECOMMUNICATION SYSTEM. WO2019002763A1|2019-01-03|Semiconductor laser source FR2953607A1|2011-06-10|DEVICE FOR COUPLING AN ELECTROMAGNETIC WAVE BETWEEN A WAVEGUIDE AND A SLOTTED METAL GUIDE, METHOD OF MANUFACTURING THE SAME EP3264541B1|2019-01-09|Semiconductor laser source FR3043852A1|2017-05-19|LASER DEVICE AND METHOD FOR MANUFACTURING SUCH A LASER DEVICE EP3469408A1|2019-04-17|Optical device EP1306941A1|2003-05-02|Optical cavity in resonance within a continuous frequency range FR2812769A1|2002-02-08|TUNABLE SEMICONDUCTOR LASER WITH WAFER EMISSION FR3065323B1|2019-06-28|Photodiode EP3654462B1|2021-09-15|Laser source with semiconductor and transmission method with said laser source EP3654463B1|2021-08-25|Semiconductor laser source FR3046853A1|2017-07-21|OPTICAL CAVITY COUPLED OPTICALLY TO A WAVEGUIDE. EP3822698B1|2022-01-12|Photonic transmitter FR3109242A1|2021-10-15|A method of manufacturing a mixed layer comprising a silicon waveguide and a silicon nitride waveguide CA2498349A1|2004-03-25|Flat top optical filtering component FR3099850A1|2021-02-12|PLANAR OPTOELECTRONIC DEVICE FOR GENERATING A HYPERFREQUENCY SIGNAL
同族专利:
公开号 | 公开日 EP3190672B1|2018-04-18| EP3190672A1|2017-07-12| JP2017152683A|2017-08-31| US20180261976A1|2018-09-13| US10270222B2|2019-04-23| FR3046705B1|2018-02-16| JP6846203B2|2021-03-24|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US20090135861A1|2007-11-09|2009-05-28|Lightwire, Inc.|Soi-based tunable laser| US20140153601A1|2012-04-26|2014-06-05|Acacia Communications Inc.|Tunable laser using iii-v gain materials| US20140153600A1|2012-11-29|2014-06-05|Agency For Science, Technology And Research|Optical Light Source| US20150180201A1|2013-11-20|2015-06-25|Coriant Advanced Technology, LLC|Quantum dot soa-silicon external cavity multi-wavelength laser| GB2522252A|2014-01-20|2015-07-22|Rockley Photonics Ltd|Tunable SOI laser|US10419123B2|2017-12-12|2019-09-17|Commissariat A L'energie Atomique Et Aux Energies Alternatives|Emitter of a monochromatic optical signal|US6856641B2|2001-01-26|2005-02-15|California Institute Of Technology|Ring resonator based narrow-linewidth semiconductor lasers| JP4772792B2|2005-07-26|2011-09-14|株式会社アドバンテスト|Symbol modulation accuracy measuring apparatus, method, program, and recording medium| JP2009278015A|2008-05-16|2009-11-26|Nec Corp|Planar lightwave circuit and wavelength tunable laser apparatus with the same| JP5764875B2|2010-06-02|2015-08-19|富士通株式会社|semiconductor optical device| JP5728964B2|2011-01-20|2015-06-03|富士通株式会社|Optical semiconductor device and manufacturing method thereof| FR3007589B1|2013-06-24|2015-07-24|St Microelectronics Crolles 2|PHOTONIC INTEGRATED CIRCUIT AND METHOD OF MANUFACTURE| US9837781B2|2014-10-24|2017-12-05|Oracle International Corporation|External cavity laser with reduced optical mode-hopping|FR3068527A1|2017-06-29|2019-01-04|Commissariat A L'energie Atomique Et Aux Energies Alternatives|LASER SOURCE WITH SEMICONDUCTOR| FR3088776B1|2018-11-15|2020-11-20|Commissariat Energie Atomique|SEMICONDUCTOR LASER SOURCE| FR3088777B1|2018-11-15|2020-11-20|Commissariat Energie Atomique|SEMICONDUCTOR LASER SOURCE AND EMISSION PROCESS WITH THIS LASER SOURCE| FR3109242A1|2020-04-10|2021-10-15|Commissariat à l'Energie Atomique et aux Energies Alternatives|A method of manufacturing a mixed layer comprising a silicon waveguide and a silicon nitride waveguide|
法律状态:
2017-01-31| PLFP| Fee payment|Year of fee payment: 2 | 2017-07-14| PLSC| Search report ready|Effective date: 20170714 | 2018-01-31| PLFP| Fee payment|Year of fee payment: 3 | 2019-01-30| PLFP| Fee payment|Year of fee payment: 4 | 2020-10-16| ST| Notification of lapse|Effective date: 20200906 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 FR1650171A|FR3046705B1|2016-01-08|2016-01-08|LASER SOURCE WITH SEMICONDUCTOR|FR1650171A| FR3046705B1|2016-01-08|2016-01-08|LASER SOURCE WITH SEMICONDUCTOR| EP17150156.2A| EP3190672B1|2016-01-08|2017-01-03|Semiconductor laser source| US15/399,312| US10270222B2|2016-01-08|2017-01-05|Semiconductor laser source| JP2017000852A| JP6846203B2|2016-01-08|2017-01-06|Semiconductor laser light source| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|